1
|
Abdi Dezfouli R, Esmaeilidezfouli E. Optimizing laccase selection for enhanced outcomes: a comprehensive review. 3 Biotech 2024; 14:165. [PMID: 38817737 PMCID: PMC11133268 DOI: 10.1007/s13205-024-04015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Despite their widespread applications in sectors such as pulp and paper, textile, food and beverage, pharmaceuticals, and biofuel production, laccases encounter challenges related to their activity and stability under varying reaction conditions. This review accumulates data on the complex interplay between laccase characteristics and reaction conditions for maximizing their efficacy in diverse biotechnological processes. Benefits of organic media such as improved substrate selectivity and reaction control, and their risks such as enzyme denaturation and reduced activity are reported. Additionally, the effect of reaction conditions such as pH and temperature on laccase activity and stability are gathered and reported. Sources like Bacillus pumilus, Alcaligenes faecalis, Bacillus clausii, and Bacillus tequilensis SN4 are producing laccases that are both thermo-active and alkali-active. Additionally, changes induced by the presence of various substances within reaction media such as metals, inhibitors, and organic solvents are also reported. Bacillus pumilus and Bacillus licheniformis LS04 produce the most resistant laccases in this case. Finally, the remarkable laccases have been highlighted and the proper laccase source for each industrial application is suggested. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04015-5.
Collapse
Affiliation(s)
- Ramin Abdi Dezfouli
- Pharmaceutical Biotechnology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, 1411413137, Iran
| | - Ensieh Esmaeilidezfouli
- Microbial Biotechnology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Mutanda I, Zahoor, Sethupathy S, Xu Q, Zhu B, Shah SWA, Zhuang Z, Zhu D. Optimization of heterologous production of Bacillus ligniniphilus L1 laccase in Escherichia coli through statistical design of experiments. Microbiol Res 2023; 274:127416. [PMID: 37290170 DOI: 10.1016/j.micres.2023.127416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Laccases are powerful multi-copper oxidoreductases that have wide applicability as "green" biocatalysts in biotechnological, bioremediation, and industrial applications. Sustainable production of large amounts of functional laccases from original sources is limited by low yields, difficulties in purification, slow growth of the organisms, and high cost of production. Harnessing the full potential of these versatile biocatalysts will require the development of efficient heterologous systems that allow high-yield, scalable, and cost-effective production. We previously cloned a temperature- and pH-stable laccase from Bacillus ligniniphilus L1 (L1-lacc) that demonstrated remarkable activity in the oxidation of lignin and delignification for bioethanol production. However, L1-lacc is limited by low enzyme yields in both the source organism and heterologous systems. Here, to improve production yields and lower the cost of production, we optimized the recombinant E. coli BL21 strain for high-level production of L1-lacc. Several culture medium components and fermentation parameters were optimized using one-factor-at-a-time (OFAT) and Plackett-Burman design (PBD) to screen for important factors that were then optimized using response surface methodology (RSM) and an orthogonal design. The optimized medium composition had compound nitrogen (15.6 g/L), glucose (21.5 g/L), K2HPO4 (0.15 g/L), MgSO4 (1 g/L), and NaCl (7.5 g/L), which allowed a 3.3-fold yield improvement while subsequent optimization of eight fermentation parameters achieved further improvements to a final volumetric activity titer of 5.94 U/mL in 24 h. This represents a 7-fold yield increase compared to the initial medium and fermentation conditions. This work presents statistically guided optimization strategies for improving heterologous production of a bacterial laccase that resulted in a high-yielding, cost-efficient production system for an enzyme with promising applications in lignin valorization, biomass processing, and generation of novel composite thermoplastics.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Xu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sayed Waqas Ali Shah
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhipeng Zhuang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Lignin Valorization: Production of High Value-Added Compounds by Engineered Microorganisms. Catalysts 2023. [DOI: 10.3390/catal13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Lignin is the second most abundant polymer in nature, which is also widely generated during biomass fractionation in lignocellulose biorefineries. At present, most of technical lignin is simply burnt for energy supply although it represents the richest natural source of aromatics, and thus it is a promising feedstock for generation of value-added compounds. Lignin is heterogeneous in composition and recalcitrant to degradation, with this substantially hampering its use. Notably, microbes have evolved particular enzymes and specialized metabolic pathways to degrade this polymer and metabolize its various aromatic components. In recent years, novel pathways have been designed allowing to establish engineered microbial cell factories able to efficiently funnel the lignin degradation products into few metabolic intermediates, representing suitable starting points for the synthesis of a variety of valuable molecules. This review focuses on recent success cases (at the laboratory/pilot scale) based on systems metabolic engineering studies aimed at generating value-added and specialty chemicals, with much emphasis on the production of cis,cis-muconic acid, a building block of recognized industrial value for the synthesis of plastic materials. The upgrade of this global waste stream promises a sustainable product portfolio, which will become an industrial reality when economic issues related to process scale up will be tackled.
Collapse
|
4
|
Malhotra M, Suman SK. Laccase-mediated delignification and detoxification of lignocellulosic biomass: removing obstacles in energy generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58929-58944. [PMID: 33712950 DOI: 10.1007/s11356-021-13283-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The rising global population and worldwide industrialization have led to unprecedented energy demand that is causing fast depletion of fossil reserves. This has led to search for alternative energy sources that are renewable and environment friendly. Use of lignocellulosic biomass for energy generation is considered a promising approach as it does not compete with food supply. However, the lignin component of the biomass acts as a natural barrier that prevents its efficient utilization. In order to remove the lignin and increase the amount of fermentable sugars, the lignocellulosic biomass is pretreated using physical and chemical methods which are costly and hazardous for environment. Moreover, during the traditional pretreatment process, numerous inhibitory compounds are generated that adversely affect the growth of fermentative microbes. Alternatively, biological methods that use microbes and their enzymes disrupt lignin polymers and increase the accessibility of the carbohydrates for the sugar generation. Microbial laccases have been considered as an efficient biocatalyst for delignification and detoxification offering a green initiative for energy generation process. The present review aims to bring together recent studies in bioenergy generation using laccase biocatalyst in the pretreatment processes. The work provides an overview of the sustainable and eco-friendly approach of biological delignification and detoxification through whole-cell and enzymatic methods, use of laccase-mediator system, and immobilized laccases for this purpose. It also summarizes the advantages, associated challenges, and potential prospects to overcome the limitations.
Collapse
Affiliation(s)
- Manisha Malhotra
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India
| | - Sunil Kumar Suman
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India.
| |
Collapse
|
5
|
Wiśniewska KM, Twarda-Clapa A, Białkowska AM. Screening of Novel Laccase Producers-Isolation and Characterization of Cold-Adapted Laccase from Kabatiella bupleuri G3 Capable of Synthetic Dye Decolorization. Biomolecules 2021; 11:828. [PMID: 34199365 PMCID: PMC8229335 DOI: 10.3390/biom11060828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Psychrophilic laccases catalyzing the bond formation in mild, environmentally friendly conditions are one of the biocatalysts at the focus of green chemistry. Screening of 41 cold-adapted strains of yeast and yeast-like fungi revealed a new laccase-producing strain, which was identified as Kabatiella bupleuri G3 IBMiP according to the morphological characteristics and analysis of sequences of the D1/D2 regions of 26S rDNA domain and the ITS1-5,8S-ITS2 region. The extracellular activity of laccase in reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at the optimal pH 3.5 was 215 U/L after 15 days of growth in a medium with waste material and 126 U/L after 25 days of cultivation in a defined medium. Copper (II) ions (0.4 mM), Tween 80 (1.0 mM) and ascorbic acid (5.0 mM) increased the production of laccase. The optimum temperature for enzyme operation is in the range of 30-40 °C and retains over 60% of the maximum activity at 10 °C. New laccase shows high thermolability-half-life at 40 °C was only 60 min. Enzyme degradation of synthetic dyes was the highest for crystal violet, i.e., 48.6% after 1-h reaction with ABTS as a mediator. Outcomes of this study present the K. bupleuri laccase as a potential psychrozyme for environmental and industrial applications.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland; (K.M.W.); (A.T.-C.)
| |
Collapse
|
6
|
Mutations in the coordination spheres of T1 Cu affect Cu 2+-activation of the laccase from Thermus thermophilus. Biochimie 2021; 182:228-237. [PMID: 33535124 DOI: 10.1016/j.biochi.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Thermus thermophilus laccase belongs to the sub-class of multicopper oxidases that is activated by the extra binding of copper to a methionine-rich domain allowing an electron pathway from the substrate to the conventional first electron acceptor, the T1 Cu. In this work, two key amino acid residues in the 1st and 2nd coordination spheres of T1 Cu are mutated in view of tuning their redox potential and investigating their influence on copper-related activity. Evolution of the kinetic parameters after copper addition highlights that both mutations play a key role influencing the enzymatic activity in distinct unexpected ways. These results clearly indicate that the methionine rich domain is not the only actor in the cuprous oxidase activity of CueO-like enzymes.
Collapse
|
7
|
Yousefi-Mokri M, Sharafi A, Rezaei S, Sadeghian-Abadi S, Imanparast S, Mogharabi-Manzari M, Amanzadeh Y, Faramarzi MA. Enzymatic hydrolysis of inulin by an immobilized extremophilic inulinase from the halophile bacterium Alkalibacillus filiformis. Carbohydr Res 2019; 483:107746. [DOI: 10.1016/j.carres.2019.107746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
|
8
|
Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR. Bacterial laccases: promising biological green tools for industrial applications. Cell Mol Life Sci 2018; 75:3569-3592. [PMID: 30046841 PMCID: PMC11105425 DOI: 10.1007/s00018-018-2883-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2018] [Accepted: 07/19/2018] [Indexed: 11/26/2022]
Abstract
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mechanisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental and industrial applications.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Quan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao-Ran Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yu Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
9
|
Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int J Biol Macromol 2018; 114:106-113. [DOI: 10.1016/j.ijbiomac.2018.03.086] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 03/18/2018] [Indexed: 11/19/2022]
|
10
|
Forootanfar H, Arjmand S, Behzadi M, Faramarzi MA. Laccase-Mediated Treatment of Pharmaceutical Wastes. RESEARCH ADVANCEMENTS IN PHARMACEUTICAL, NUTRITIONAL, AND INDUSTRIAL ENZYMOLOGY 2018. [DOI: 10.4018/978-1-5225-5237-6.ch010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Laccases are versatile multi-copper enzymes belonging to the superfamily of oxidase enzymes, which have been known since the nineteenth century. Recent discoveries have refined investigators' views of the potential of laccase as a magic tool for remarkable biotechnological purposes. A literature review of the capabilities of laccases, their assorted substrates, and their molecular mechanism of action now indicates the emergence of a new direction for laccase application as part of an arsenal in the fight against the contamination of water supplies by a number of frequently prescribed medications. This chapter provides a critical review of the literature and reveals the pivotal role of laccases in the elimination and detoxification of pharmaceutical contaminants in aquatic environments and wastewaters.
Collapse
|
11
|
Delignification and detoxification of peanut shell bio-waste using an extremely halophilic laccase from an Aquisalibacillus elongatus isolate. Extremophiles 2017; 21:993-1004. [PMID: 28871494 DOI: 10.1007/s00792-017-0958-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
Lignocellulose bioconversion is a harsh process requiring the use of surfactants and organic solvents. Consequently, the incorporation of laccases in this bioconversion requires the bioprospecting of enzymes that can remain stable under extreme conditions. An extracellular, highly stable laccase was produced by the halophilic isolate Aquisalibacillus elongatus in submerged liquid culture fermentation. Statistical and non-statistical strategies gave the highest enzymatic activity (8.02 U mL-1) following addition of glucose (1.7 g L-1), copper sulfate (0.8 g L-1), urea (15 g L-1), and CaCl2 (0.8 g L-1). The enzyme, after purification using a synthetic affinity support, delignified a peanut shell substrate by 45%. A pH of 8.0 and a temperature of 35 °C were optimal for delignification of this bio-waste material. Addition of [Bmim][PF6], 1,4-dioxane, acetone, and HBT promoted this bio-waste delignification. Bio-treatment in the presence of 50% [Bmim][PF6] gave a maximal lignin removal of 87%. The surfactants tested had no significant effects on the delignification yield. The laccase also detoxified the toxic phenols found in peanut shell waste. The high catalytic efficiency of this enzyme against a lignocellulosic sample under extreme conditions suggests the suitability of this laccase for industrial applications.
Collapse
|