1
|
Kopera M, Adamkiewicz M, Pieniazek A. Effect of Glyoxal on Plasma Membrane and Cytosolic Proteins of Erythrocytes. Int J Mol Sci 2025; 26:4328. [PMID: 40362565 PMCID: PMC12072774 DOI: 10.3390/ijms26094328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Glyoxal (GO) is a reactive dicarbonyl derived endogenously from sugars and other metabolic reactions within cells. Numerous exogenous sources of this compound include tobacco smoking, air pollution, and food processing. GO is toxic to cells mainly due to its high levels and reactivity towards proteins, lipids, and nucleic acids. We speculate that glyoxal could be involved in erythrocyte protein damage and lead to cell dysfunction. The osmotic fragility and level of amino and carbonyl groups of membrane proteins of erythrocytes incubated for 24 h with GO were identified. The amount of thiol, amino, and carbonyl groups was also measured in hemolysate proteins after erythrocyte treatment with GO. In hemolysate, the level of glutathione, non-enzymatic antioxidant capacity (NEAC), TBARS, and activity of antioxidant enzymes was also determined. The study's results indicated that GO increases erythrocyte osmotic sensitivity, alters the levels of glutathione and free functional groups in hemolysate proteins, and modifies the activity of antioxidant enzymes. Our findings indicate that GO is a highly toxic compound to human erythrocytes. Glyoxal at concentrations above 5 mM can cause functional changes in erythrocyte proteins and disrupt the oxidoreductive balance in cells.
Collapse
Affiliation(s)
- Michal Kopera
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (M.K.); (M.A.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Str., 90-236 Lodz, Poland
| | - Malgorzata Adamkiewicz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (M.K.); (M.A.)
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (M.K.); (M.A.)
| |
Collapse
|
2
|
Zhang M, Huang C, Ou J, Liu F, Ou S, Zheng J. Glyoxal in Foods: Formation, Metabolism, Health Hazards, and Its Control Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2434-2450. [PMID: 38284798 DOI: 10.1021/acs.jafc.3c08225] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Glyoxal is a highly reactive aldehyde widely present in common diet and environment and inevitably generated through various metabolic pathways in vivo. Glyoxal is easily produced in diets high in carbohydrates and fats via the Maillard reaction, carbohydrate autoxidation, and lipid peroxidation, etc. This leads to dietary intake being a major source of exogenous exposure. Exposure to glyoxal has been positively associated with a number of metabolic diseases, such as diabetes mellitus, atherosclerosis, and Alzheimer's disease. It has been demonstrated that polyphenols, probiotics, hydrocolloids, and amino acids can reduce the content of glyoxal in foods via different mechanisms, thus reducing the risk of exogenous exposure to glyoxal and alleviating carbonyl stresses in the human body. This review discussed the formation and metabolism of glyoxal, its health hazards, and the strategies to reduce such health hazards. Future investigation of glyoxal from different perspectives is also discussed.
Collapse
Affiliation(s)
- Mianzhang Zhang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
- Guangzhou College of Technology and Business, 510580 Guangzhou, Guangdong China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, 510632 Guangzhou , China
| |
Collapse
|
3
|
Ma X, Sun Y, Pan D, Cao J, Dang Y. Structural characterization and stability analysis of phosphorylated nitrosohemoglobin. Food Chem 2022; 373:131475. [PMID: 34763930 DOI: 10.1016/j.foodchem.2021.131475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 11/04/2022]
Abstract
Phosphorylation modification by sodium tripolyphosphate (STP) on nitrosohemoglobin (NO-Hb) and its effect on the protein structure and stability were studied. Phosphate groups were found to bridge to NO-Hb via C-O-P bonds through serine and tyrosine residues. Hydrothermal treatment with STP maintained the α-helix stability of NO-Hb, and this change in secondary structure improved the proteins stability. Compared to NO-Hb, phosphorylated NO-Hb (P-NO-Hb) was more stable with respect to light (outdoor light, indoor light, and dark conditions), oxidant (hydrogen peroxide), high temperature, and non-neutral pH. The absorbance of P-NO-Hb was nearly twice those of Hb and NO-Hb (P < 0.05), and the absorbance of P-NO-Hb decreased more slowly over time than those of Hb and NO-Hb. The results confirm that the presence of phosphate groups can increase the stability of Hb through structural changes.
Collapse
Affiliation(s)
- Xiaoqing Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| |
Collapse
|
4
|
Xie MZ, Guo C, Dong JQ, Zhang J, Sun KT, Lu GJ, Wang L, Bo DY, Jiao LY, Zhao GA. Glyoxal damages human aortic endothelial cells by perturbing the glutathione, mitochondrial membrane potential, and mitogen-activated protein kinase pathways. BMC Cardiovasc Disord 2021; 21:603. [PMID: 34922451 PMCID: PMC8684178 DOI: 10.1186/s12872-021-02418-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Exposure to glyoxal, the smallest dialdehyde, is associated with several diseases; humans are routinely exposed to glyoxal because of its ubiquitous presence in foods and the environment. The aim of this study was to examine the damage caused by glyoxal in human aortic endothelial cells.
Methods Cell survival assays and quantitative fluorescence assays were performed to measure DNA damage; oxidative stress was detected by colorimetric assays and quantitative fluorescence, and the mitogen-activated protein kinase pathways were assessed using western blotting. Results Exposure to glyoxal was found to be linked to abnormal glutathione activity, the collapse of mitochondrial membrane potential, and the activation of mitogen-activated protein kinase pathways. However, DNA damage and thioredoxin oxidation were not induced by dialdehydes. Conclusions Intracellular glutathione, members of the mitogen-activated protein kinase pathways, and the mitochondrial membrane potential are all critical targets of glyoxal. These findings provide novel insights into the molecular mechanisms perturbed by glyoxal, and may facilitate the development of new therapeutics and diagnostic markers for cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02418-3.
Collapse
Affiliation(s)
- Ming-Zhang Xie
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| | - Chun Guo
- Henan Key Laboratory of Neural Regeneration (Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia), First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Jia-Qi Dong
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Jie Zhang
- Department of Integrating Western and Chinese of Internal Medicine, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Ke-Tao Sun
- Department of Laboratory, Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Guang-Jian Lu
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Lei Wang
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - De-Ying Bo
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Lu-Yang Jiao
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| | - Guo-An Zhao
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| |
Collapse
|
5
|
Banerjee S. Long-term incubation of myoglobin with glyoxal induces amyloid like aggregation of the heme protein: Implications of advanced glycation end products in protein conformational disorders. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Banerjee S. Effect of glyoxal and 1-methylisatin on stress-induced fibrillation of Hen Egg White Lysozyme: Insight into the anti-amyloidogenic property of the compounds with possible therapeutic implications. Int J Biol Macromol 2020; 165:1552-1561. [DOI: 10.1016/j.ijbiomac.2020.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
|
7
|
Khan S, Rehman A, Shah H, Aadil RM, Ali A, Shehzad Q, Ashraf W, Yang F, Karim A, Khaliq A, Xia W. Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1828452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sohail Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haroon Shah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Fangshan, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahem Yar Khan, Pakistan
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Grabska-Zielińska S, Sionkowska A, Coelho CC, Monteiro FJ. Silk Fibroin/Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials toward Bone Tissue Regeneration. MATERIALS 2020; 13:ma13153433. [PMID: 32759746 PMCID: PMC7436058 DOI: 10.3390/ma13153433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022]
Abstract
In this study, three-dimensional materials based on blends of silk fibroin (SF), collagen (Coll), and chitosan (CTS) cross-linked by glyoxal solution were prepared and the properties of the new materials were studied. The structure of the composites and the interactions between scaffold components were studied using FTIR spectroscopy. The microstructure was observed using a scanning electron microscope. The following properties of the materials were measured: density and porosity, moisture content, and swelling degree. Mechanical properties of the 3D materials under compression were studied. Additionally, the metabolic activity of MG-63 osteoblast-like cells on materials was examined. It was found that the materials were characterized by a high swelling degree (up to 3000% after 1 h of immersion) and good porosity (in the range of 80–90%), which can be suitable for tissue engineering applications. None of the materials showed cytotoxicity toward MG-63 cells.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-56-611-2210
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Catarina C. Coelho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.C.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-180 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- FLUIDINOVA, S.A., 4470-605 Moreira da Maia, Portugal
| | - Fernando J. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.C.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-180 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
RETRACTED ARTICLE: Glyoxal modification mediates conformational alterations in silk fibroin: Induction of fibrillation with amyloidal features. J Biosci 2020. [DOI: 10.1007/s12038-020-0009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Banerjee S. Effect of Glyoxal Modification on a Critical Arginine Residue (Arg-31α) of Hemoglobin: Physiological Implications of Advanced Glycated end Product an in vitro Study. Protein Pept Lett 2019; 27:770-781. [PMID: 31774041 DOI: 10.2174/0929866526666191125101122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-enzymatic protein glycation is involved in structure and stability changes that impair protein functionality, resulting in several human diseases, such as diabetes and amyloidotic neuropathies (Alzheimer's disease, Parkinson's disease and Andrade's syndrome). Glyoxal, an endogenous reactive oxoaldehyde, increases in diabetes and reacts with several proteins to form advanced glycation end products through Maillard-like reaction. OBJECTIVE Human hemoglobin, the most abundant protein in blood cells is subjected to nonenzymatic modification by reactive oxoaldehydes in diabetic condition. In the present study, the effect of a low concentration of glyoxal (5 μM) on hemoglobin (10 μM) has been investigated following a period of 30 days incubation in vitro. METHODS Different techniques, mostly biophysical and spectroscopic (e.g. circular dichroism, differential scanning calorimetric study, dynamic light scattering, mass spectrometry, etc.) were used to study glyoxal-induced changes of hemoglobin. RESULTS Glyoxal-treated hemoglobin exhibits decreased absorbance around 280 nm, decreased fluorescence and reduced surface hydrophobicity compared to normal hemoglobin. Glyoxal treatment enhances the stability of hemoglobin and lowers its susceptibility to thermal aggregation compared to control hemoglobin as seen by different studies. Finally, peptide mass fingerprinting study showed glyoxal to modify an arginine residue of α-chain of hemoglobin (Arg-31α) to hydroimidazolone. CONCLUSION Increased level of glyoxal in diabetes mellitus as well as its high reactivity may cause modifications of the heme protein. Thus, considering the significance of glyoxal-induced protein modification under physiological conditions, the observation appears clinically relevant in terms of understanding hydroimidazolone-mediated protein modification under in vivo conditions.
Collapse
Affiliation(s)
- Sauradipta Banerjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, Kolkata 700009, India
| |
Collapse
|
11
|
Xu Q, Shan Y, Wang N, Liu Y, Zhang M, Ma M. Sialic acid involves in the interaction between ovomucin and hemagglutinin and influences the antiviral activity of ovomucin. Int J Biol Macromol 2018; 119:533-539. [PMID: 30071221 PMCID: PMC7124660 DOI: 10.1016/j.ijbiomac.2018.07.186] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 11/27/2022]
Abstract
Ovomucin (OVM) plays an important role in inhibiting infection of various pathogens. However, this bioactivity mechanism is not much known. Here, the role of sialic acid in OVM anti-virus activity has been studied by ELISA with lectin or ligand. Structural changes of OVM after removing sialic acid were analyzed by circular dichroism and fluorescence spectroscopy. OVM could be binding to the hemagglutinin (HA) of avian influenza viruses H5N1 and H1N1, this binding was specific and required the involvement of sialic acid. When sialic acid was removed, the binding was significantly reduced 71.5% and 64.35%, respectively. Therefore, sialic acid was proved as a recognition site which avian influenza virus bound to. Meanwhile, the endogenous fluorescence and surface hydrophobicity of OVM removing sialic acid were increased and the secondary structure tended to shift to random coil. This indicated that OVM molecules were in an unfolded state and spatial conformation disorder raising weakly. Remarkably, free sialic acid strongly promoted OVM binding to HA and thereby enhanced the interaction. It may contribute to the inhibition of host cell infection, agglutinate viruses. This study can be extended to the deepening of passive immunization field.
Collapse
Affiliation(s)
- Qi Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Ning Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yaping Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Maojie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|