1
|
Wang N, Liu Y, Yang C, Du J, Yu D, He P, Xu H, Li L, Zhao P, Li Y. Molecular insights into vasicine and butyrylcholinesterase interactions: A complimentary biophysical, multi-spectroscopic, and computational study. Int J Biol Macromol 2025; 292:139253. [PMID: 39733876 DOI: 10.1016/j.ijbiomac.2024.139253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Butyrylcholinesterase (BChE) plays a pivotal role in regulating acetylcholine (ACh) levels during the progression of Alzheimer's disease (AD), so emerged as an attractive target in AD treatment. Vasicine, a naturally occurring pyrroloquinazoline alkaloid, was identified as a natural BChE inhibitor (IC50 = 1.47 ± 0.37 μM) from Traditional Chinese Medicine database. No any detailed research concerning the binding behavior of BChE with small molecule. As the first case, the inhibitory mechanism of vasicine on BChE was investigated using multi-spectroscopic methods (including fluorescence quenching, ANS fluorescence probe, three-dimensional fluorescence, time-resolved fluorescence, circular dichroism), isothermal titration calorimetry, surface plasmon resonance, and computational approaches. As a reversible and mixed inhibitor, vasicine displayed moderate affinity for BChE with an affinity constant KD of 2.111 μM, its binding process was characterized as a spontaneous exothermic reaction with reduced entropy, primarily driven by hydrogen bonding interactions. Vasicine quenched the fluorescence of BChE through both static and dynamic quenching mechanisms, leading to an increase in the α-helix content and surface hydrophobicity of BChE. Furthermore, the fluctuation of the skeleton atoms in the vasicine-BChE complex system remained stable, indicating good stability within the simulated physiological environment. In addition, vasicine exerted good safety for PC12 cells. Above findings provide molecular insights into the inhibitory mechanism of vasicine against BChE for the first time, and offer valuable information for future structure modification and therapeutic applications of vasicine as a BChE inhibitor.
Collapse
Affiliation(s)
- Na Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Can Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiana Du
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dehong Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pei He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haiqi Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lizi Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Puchen Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Shekhar H, Behera P, Naik A, Mishra M, Sahoo H. Interaction between polydopamine-based IONPs and human serum albumin (HSA): a spectroscopic analysis with cytotoxicity impact. Nanotoxicology 2024; 18:479-498. [PMID: 39177468 DOI: 10.1080/17435390.2024.2392579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Iron oxide nanoparticles (IONPs) have been extensively explored in biomedicine, bio-sensing, hyperthermia, and drug/gene delivery, attributed to their versatile and tunable properties. However, owing to its numerous applications, the functionalization of IONPs with appropriate materials is in demand. To achieve optimal functionalization of IONPs, polydopamine (PDA) was utilized due to its ability to provide a superior functionalized surface, near-infrared light absorption, and adhesive nature to customize desired functionalized IONPs. This notion of involving PDA led to the successful synthesis of magnetite-PDA nanoparticles, where PDA is surface-coated on magnetite (Fe3O4@PDA). The Fe3O4@PDA nanoparticles were characterized using techniques like TEM, FESEM, PXRD, XPS, VSM, and FTIR, suggesting PDA's successful attachment with magnetite crystal structure retention. Human serum albumin (HSA), the predominant protein in blood plasma, interacts with the delivered nanoparticles. Therefore, we have employed various spectroscopic techniques, along with cytotoxicity, to inspect the effect of Fe3O4@PDA NPs on the stability and structure of HSA. The structural alterations were examined using circular dichroism (CD) and synchronous fluorescence spectroscopy (SFS). It has been observed that there are no structural perturbations in the secondary structure of the HSA protein after interaction with Fe3O4@PDA. Studies using steady-state fluorescence revealed that the inherent fluorescence intensities of HSA were suppressed after interaction with Fe3O4@PDA. In addition, temperature-dependent fluorescence measurements suggested that the type of quenching consists of both static and dynamic quenching simultaneously. A cytotoxicity study in Drosophila melanogaster larvae revealed no cytotoxic effects but did show a minor genotoxic effect only at higher concentrations.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Priyatama Behera
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ashutosh Naik
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
- Center for Nanomaterials, National Institute of Technology, Rourkela, India
| |
Collapse
|
3
|
Li D, Wang S, Dong J, Li J, Wang X, Liu F, Ba X. Inhibition and disaggregation effect of flavonoid-derived carbonized polymer dots on protein amyloid aggregation. Colloids Surf B Biointerfaces 2024; 238:113928. [PMID: 38692175 DOI: 10.1016/j.colsurfb.2024.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
In this research, four water-insoluble flavonoid compounds were utilized and reacted with arginine to prepare four carbonized polymer dots with good water-solubility in a hydrothermal reactor. Structural characterization demonstrated that the prepared carbonized polymer dots were classic core-shell structure. Effect of the prepared carbonized polymer dots on protein amyloid aggregation was further investigated using hen egg white lysozyme and human lysozyme as model protein in aqueous solution. All of the prepared carbonized polymer dots could retard the amyloid aggregation of hen egg white lysozyme and human lysozyme in a dose-depended manner. All measurements displayed that the inhibition ratio of luteolin-derived carbonized polymer dots (CPDs-1) was higher than that of the other three carbonized polymer dots under the same dosage. This result may be interpreted by the highest content of phenolic hydroxyl groups on the periphery. The inhibition ratio of CPDs-1 on hen egg white lysozyme and human lysozyme reached 88 % and 83 % at the concentration of 0.5 mg/mL, respectively. CPDs-1 also could disaggregate the formed mature amyloid fibrils into short aggregates.
Collapse
Affiliation(s)
- Dexin Li
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.
| | - Jiawei Dong
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Jie Li
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Xinnan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Feng Liu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
4
|
Lin C, Du H. Interactions between forsythoside E and two cholinesterases at the different conditions: fluorescence sections. Methods Appl Fluoresc 2024; 12:025003. [PMID: 38428023 DOI: 10.1088/2050-6120/ad2f3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Forsythoside E is one secondary metabolite ofForsythia suspensa(Thunb.) Vahl. In the study, the interactions between forsythoside E and two types of cholinesterases, acetylcholinesterase and butyrylcholinesterase were investigated in the different conditions. Forsythoside E increased the fluorescence intensity of acetylcholinesterase but quenched the fluorescence of butyrylcholinesterase. Aβ25-35used in the study may not form complexes with cholinesterases, and did not affect the interaction between forsythoside E and cholinesterases. The charged quaternary group of AsCh interacted with the 'anionic' subsite in acetylcholinesterase, which did not affect the interaction between forsythoside E and acetylcholinesterase. The enhancement rate of forsythoside E to acetylcholinesterase fluorescence from high to low was acid solution (pH 6.4), neutral solution (pH 7.4) and alkaline solution (pH 8.0), while the reduction rate of forsythoside E to butyrylcholinesterase fluorescence was in reverse order. Metal ions may interact with cholinesterases, and increased the effects of forsythoside E to cholinesterases fluorescence, in order that Fe3+was the highest, followed by Cu2+, and Mg2+. A forsythoside E-butyrylcholinesterase complex at stoichiometric ratio of 1:1 was spontaneously formed, and the static quenching was the main quenching mode in the process of forsythoside E binding with butyrylcholinesterase. TheKvalues of two complexes were pretty much the same, suggesting that the interaction between cholinesterases and forsythoside E was almost unaffected by acid-base environment and metal ions. Thennumbers of two cholinesterases approximately equaled to one, indicating that there was only one site on each cholinesterase applicable for forsythoside E to bind to.
Collapse
Affiliation(s)
- Conghuan Lin
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Huizhi Du
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
5
|
Altwaijry N, Almutairi GS, Khan MS, Alokail MS, Alafaleq N, Ali R. The effect of novel antihypertensive drug valsartan on lysozyme aggregation: A combined in situ and in silico study. Heliyon 2023; 9:e15270. [PMID: 37123968 PMCID: PMC10130856 DOI: 10.1016/j.heliyon.2023.e15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Protein misfolding can result in amyloid fiber aggregation, which is associated with various types of diseases. Therefore, preventing or treating abnormally folded proteins may provide therapeutic intervention for these diseases. Valsartan (VAL) is an angiotensin II receptor blocker (ARB) that is used to treat hypertension. In this study, we examine the anti-aggregating effect of VAL against hen egg-white lysozyme (HEWL) amyloid fibrils through spectroscopy, docking, and microscopic analysis. In vitro formation of HEWL amyloid fibrils was indicated by increased turbidity, RLS (Rayleigh light scattering), and ThT fluorescence intensity. 10 μM VAL, amyloid/aggregation was inhibited up to 83% and 72% as measured by ThT and RLS respectively. In contrast, 100 μM VAL significantly increases the fibril aggregation of HEWL. CD spectroscopy results show a stabilization of HEWL α-helical structures in the presence of 10 μM VAL while the increase in β-sheet was detected at 100 μM concentration of VAL. The hydrophobicity of HEWL was increased at 100 μM VAL, suggesting the promotion of aggregation via its self-association. Steady-state quenching revealed that VAL and HEWL interact spontaneously via hydrogen bonds and van der Waals forces. Transmission electron microscopy (TEM) images illustrate that the needle-like fibers of HEWL amyloid were reduced at 10 μM VAL, while at 100 μM the fibrils of amyloid were increased. Additionally, our computational studies showed that VAL could bind to two binding sites within HEWL. In the BS-1 domain of HEWL, VAL binds to ASN59, ILE98, ILE58, TRP108, VAL109, SER50, ASP52, ASN59, ALA107, and TRP108 residues with a binding energy of -9.72 kcal mol-1. Also, it binds to GLU7, ALA10, ALA11, CYS6, ARG128, and ARG14 in the BS-2 domain with a binding energy of -5.89 kcal mol-1. VAL, therefore, appears to have dual effect against HEWL aggregation. We suggest that VAL stabilizes HEWL's aggregation-prone region (APR) at 10 μM, preventing aggregation. Also, we assume that at 100 μM, VAL occupies BS-2 beside BS-1 and destabilizes the folding structure of HEWL, resulting in aggregation. Further studies are needed to investigate the mechanism of action and determine its potential side effects.
Collapse
Affiliation(s)
- Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Ghaliah S. Almutairi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahhnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Majed S. Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medial Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, 11481, Saudi Arabia
| |
Collapse
|
6
|
Effect of Antihypertensive Drug (Chlorothiazide) on Fibrillation of Lysozyme: A Combined Spectroscopy, Microscopy, and Computational Study. Int J Mol Sci 2023; 24:ijms24043112. [PMID: 36834523 PMCID: PMC9959601 DOI: 10.3390/ijms24043112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Amyloid fibrils abnormally accumulate together in the human body under certain conditions, which can result in lethal conditions. Thus, blocking this aggregation may prevent or treat this disease. Chlorothiazide (CTZ) is a diuretic and is used to treat hypertension. Several previous studies suggest that diuretics prevent amyloid-related diseases and reduce amyloid aggregation. Thus, in this study we examine the effects of CTZ on hen egg white lysozyme (HEWL) aggregation using spectroscopic, docking, and microscopic approaches. Our results showed that under protein misfolding conditions of 55 °C, pH 2.0, and 600 rpm agitation, HEWL aggregated as evidenced by the increased turbidity and Rayleigh light scattering (RLS). Furthermore, thioflavin-T, as well as trans electron microscope (TEM) analysis confirmed the formation of amyloid structures. An anti-aggregation effect of CTZ is observed on HEWL aggregations. Circular dichroism (CD), TEM, and Thioflavin-T fluorescence show that both CTZ concentrations reduce the formation of amyloid fibrils as compared to fibrillated. The turbidity, RLS, and ANS fluorescence increase with CTZ increasing. This increase is attributed to the formation of a soluble aggregation. As evidenced by CD analysis, there was no significant difference in α-helix content and β-sheet content between at 10 µM CTZ and 100 µM. A TEM analysis of HEWL coincubated with CTZ at different concentrations validated all the above-mentioned results. The TEM results show that CTZ induces morphological changes in the typical structure of amyloid fibrils. The steady-state quenching study demonstrated that CTZ and HEWL bind spontaneously via hydrophobic interactions. HEWL-CTZ also interacts dynamically with changes in the environment surrounding tryptophan. Computational results revealed the binding of CTZ to ILE98, GLN57, ASP52, TRP108, TRP63, TRP63, ILE58, and ALA107 residues in HEWL via hydrophobic interactions and hydrogen bonds with a binding energy of -6.58 kcal mol-1. We suggest that at 10 µM and 100 μM, CTZ binds to the aggregation-prone region (APR) of HEWL and stabilizes it, thus preventing aggregation. Based on these findings, we can conclude that CTZ has antiamyloidogenic activity and can prevent fibril aggregation.
Collapse
|
7
|
Regulation of Lysozyme Activity by Human Hormones. IRANIAN BIOMEDICAL JOURNAL 2023; 27:58-65. [PMID: 36624688 PMCID: PMC9971709 DOI: 10.52547/ibj.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Lysozyme is a part of human and animal noncellular immunity. The regulation of its activity by hormones is poorly studied. The aim of this study was to test the in vitro activity of lysozyme in the presence of catecholamines, natriuretic hormones, and estradiol (E2). Methods Hormones were incubated with lysozyme, and the activity of lysozome was further determined using a test culture of Micrococcus luteus in the early exponential growth stage. The activity of lysozyme was assessed based on the rate of change in the OD of the test culture. Molecular docking was performed using SwissDock server http://www.swissdock.ch/docking), and molecular structures were further analyzed and visualized in the UCSF Chimera 1.15rc software. Results According to the results, epinephrine and norepinephrine increased lysozyme activity up to 180% compared to the hormone-free enzyme. Changing the pH of the medium from 6.3 to 5.5, increased the lysozyme activity in the presence of E2 up to 150-200 %. The results also showed that exposure to hormones could modify lysozyme ctivity, and this effect depends on the temperature and pH value. The molecular docking revealed a decrease in the activation energy of the active site of enzyme during the interaction of catecholamines with the amino acid residues, asp52 and glu35 of the active site. Conclusion Our findings demonstrate an additional mechanism for the involvement of lysozyme in humoral regulation of nonspecific immunity with respect to human pathogenic microflora and bacterial skin commensals by direct modulation of its activity using human hormones.
Collapse
|
8
|
Hou T, Zhang N, Yan C, Ding M, Niu H, Guan P, Hu X. Curcumin-loaded protein imprinted mesoporous nanosphere for inhibiting amyloid aggregation. Int J Biol Macromol 2022; 221:334-345. [PMID: 36084870 DOI: 10.1016/j.ijbiomac.2022.08.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Some natural variants of human lysozyme are associated with systemic non-neurological amyloidosis that leads to amyloid protein fibril deposition in different tissues. Inhibition of amyloid fibrillation by nanomaterials is considered to be an effective approach to treating amyloidosis. Here, we prepared a targeted, highly loaded curcumin lysozyme-imprinted nanosphere (CUR-MIMS) that could effectively inhibit the aggregation of lysozyme with lysozyme adsorption capacity of 193.57 mg g-1 and the imprinting factor (IF) of 3.72. CUR-MIMS could bind to lysozyme through hydrophobic interactions and effectively reduce the hydrophobicity of the total solvent-exposed surface in lysozyme fibrillation, thus reducing the self-assembly process triggered by hydrophobic interactions. Thioflavin T (ThT) analysis demonstrated that CUR-MIMS inhibited the aggregation of amyloid fibrils in a dose-dependent manner (inhibition efficiency of 56.07 %). Circular dichroism (CD) spectrum further illustrated that CUR-MIMS could significantly inhibit the transition of lysozyme from α-helix structure to β-sheet. More importantly, biological experiments proved the good biocompatibility of CUR-MIMS, which indicated the potential of our system as a future therapeutic platform for amyloidosis.
Collapse
Affiliation(s)
- Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Nan Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chaoren Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Minling Ding
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huizhe Niu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
9
|
Kaur L, Rahman AJ, Singh A, Pathak M, Datta A, Singhal R, Ojha H. Binding studies for the interaction between hazardous organophosphorus compound phosmet and lysozyme: Spectroscopic and In-silico analyses. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Liu H, Wang D, Ren Y, Wang L, Weng T, Liu J, Wu Y, Ding Z, Liu M. Multispectroscopic and synergistic antioxidant study on the combined binding of caffeic acid and (-)-epicatechin gallate to lysozyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120986. [PMID: 35151167 DOI: 10.1016/j.saa.2022.120986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The binding of caffeic acid (CA) and/or (-)-epicatechin gallate (ECG) to lysozyme was investigated by multispectroscopic methods and molecular docking. The effects of the single and combined binding on the structure, activity and stability of lysozyme and the synergistic antioxidant activity of CA and ECG were also studied. Fluorescence quenching spectra, time-resolved fluorescence spectra, and UV-vis absorption difference spectra all ascertained the static quenching mechanism of lysozyme by CA/ECG. Thermodynamic parameters indicated that CA and ECG competitively bound to lysozyme, and CA had a stronger binding affinity, which was consistent with the results of molecular docking. Hydrogen bonding, van der Waals' force and electrostatic interaction were the main driving forces for the binding process. Synchronous fluorescence spectra displayed that the interaction of CA/ECG exposed the tryptophan residues of lysozyme to a more hydrophilic environment. Circular dichroism spectroscopy, Fourier transform infrared spectroscopy and dynamic light scattering indicated that the binding of CA and/or ECG to lysozyme resulted in the change of the secondary structure and increased the particle size of lysozyme. The binding of CA and/or ECG to lysozyme inhibited the enzyme activity and enhanced the thermal stability of lysozyme. The combined application of CA and ECG showed antioxidant synergy which was influenced by the encapsulation of lysozyme and cellular uptake. In summary, this work provides theoretical guidance for lysozyme as a carrier for the combined application of CA and ECG.
Collapse
Affiliation(s)
- He Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Danfeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yongfang Ren
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Tianxin Weng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
11
|
Hussain I, Fatima S, Ahmed S, Tabish M. Deciphering the biomolecular interaction of β-resorcylic acid with human lysozyme: A biophysical and bioinformatics outlook. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Liu H, Zou S, Dai S, Zhang J, Li W. Dopamine sheathing facilitates the anisotropic growth of lysozyme crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Jin L, Liu C, Zhang N, Zhang R, Yan M, Bhunia A, Zhang Q, Liu M, Han J, Siebert HC. Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules 2021; 22:1910-1920. [PMID: 33844512 DOI: 10.1021/acs.biomac.0c01802] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Misfolding proteins could form oligomers or amyloid fibers, which can cause a variety of amyloid-associated diseases. Thus, the inhibition of protein misfolding and fibrillation is a promising way to prevent and treat these diseases. Captopril (CAP) is an angiotensin-converting enzyme inhibitor (ACEI) that is widely used to treat diseases such as hypertension and heart failure. In this study, we found that CAP inhibits human lysozyme (HL) fibrillation through the combination techniques of biophysics and biochemistry. The data obtained by thioflavin-T (ThT) and Congo red (CR) assays showed that CAP hindered the aggregation of HL amyloid fibrils by reducing the β-sheet structure of HL amyloid, with an IC50 value of 34.75 ± 1.23 μM. Meanwhile, the particle size of HL amyloid decreased sharply in a concentration-dependent approach after CAP treatment. According to the visualization of atomic force microscopy (AFM) and transmission electron microscopy (TEM), we verified that in the presence of CAP, the needle-like fibers of HL amyloid were significantly reduced. In addition, CAP incubation dramatically improved the cell survival rate exposed to HL fibers. Our studies also revealed that CAP could form hydrogen bonds with amino acid residues of Glu 35 and Ala 108 in the binding pocket of HL, which help in maintaining the α-helical structure of HL and then prevent the formation of amyloid fibrillation. It can be concluded that CAP has antiamyloidogenic activity and a protective effect on HL amyloid cytotoxicity.
Collapse
Affiliation(s)
- Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Qinxiu Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
14
|
Liu H, Zhang J, Li W. The distinct binding modes of pesticides affect the phase transitions of lysozyme. CrystEngComm 2021. [DOI: 10.1039/d1ce00108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studying the aggregation and nucleation of proteins in the presence of organic molecules is helpful for disclosing the mechanisms of protein crystallization.
Collapse
Affiliation(s)
- Han Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Wei Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
15
|
Biophysical Insight into the Interaction of Human Lysozyme with Anticancer Drug Anastrozole: A Multitechnique Approach. ScientificWorldJournal 2020; 2020:8363685. [PMID: 32908463 PMCID: PMC7468670 DOI: 10.1155/2020/8363685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
In the present study, we employ fluorescence spectroscopy, dynamic light scattering, and molecular docking methods. Binding of anticancer drug anastrozole with human lysozyme (HL) is studied. Binding of anastrozole to HL is moderate but spontaneous. There is anastrozole persuaded hydrodynamic change in HL, leading to molecular compaction. Binding of anastrozole to HL also decreased in vitro lytic activity of HL. Molecular docking results suggest the electrostatic interactions and van der Waals forces played key role in binding interaction of anastrozole near the catalytic site. Binding interaction of anastrozole to proteins other than major transport proteins in blood can significantly affect pharmacokinetics of this molecule. Hence, rationalizing drug dosage is important. This study also points to unrelated effects that small molecules bring in the body that are considerable and need thorough investigation.
Collapse
|
16
|
Konar M, Sahoo H. Tyrosine mediated conformational change in bone morphogenetic protein – 2: Biophysical implications of protein – phytoestrogen interaction. Int J Biol Macromol 2020; 150:727-736. [DOI: 10.1016/j.ijbiomac.2020.02.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023]
|
17
|
Exploring the interaction of bioactive kaempferol with serum albumin, lysozyme and hemoglobin: A biophysical investigation using multi-spectroscopic, docking and molecular dynamics simulation studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111825. [DOI: 10.1016/j.jphotobiol.2020.111825] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 01/08/2023]
|
18
|
Almutairi FM, Ajmal MR, Siddiqi MK, Amir M, Khan RH. Multi-spectroscopic and molecular docking technique study of the azelastine interaction with human serum albumin. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Shamsi A, Mohammad T, Anwar S, Alajmi MF, Hussain A, Hassan MI, Ahmad F, Islam A. Probing the interaction of Rivastigmine Tartrate, an important Alzheimer's drug, with serum albumin: Attempting treatment of Alzheimer's disease. Int J Biol Macromol 2020; 148:533-542. [PMID: 31954794 DOI: 10.1016/j.ijbiomac.2020.01.134] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 01/16/2023]
Abstract
The present study was aimed at investigating the binding between an important drug of Alzheimer's therapy, Rivastigmine tartrate (RT), with Bovine serum albumin (BSA). BSA is a model protein that is increasingly being used for studies related to drug-protein interaction owing to its structural similarity with human serum albumin (HSA) which is extremely abundant in the circulatory system comprising around 60% of the total plasma protein. Fluorescence spectroscopy implied that complex formation is taking place between BSA and RT; binding constant calculated was of the order of 104 M-1 implicative of the strength of this interaction. Fluorescence spectroscopy was carried out at three different temperatures in a bid to find out the operative mode of quenching; static quenching was taking place for RT-BSA interaction with a binding constant of 2.5 × 104 M-1 at 298 K. Further, changes in Far UV CD spectra clearly implied that RT induces structural transition in BSA suggestive of RT-BSA complex formation. The negative value of ∆G0 as obtained from fluorescence spectroscopy and isothermal titration calorimetry (ITC) suggests the reaction to be spontaneous and thermodynamically favorable. Additionally, molecular docking was employed to investigate different forces and critical residues involved in RT-BSA interaction. Furthermore, all-atom molecular dynamics simulation for 50 ns was performed on the BSA-RT complex to investigate its conformational behavior, stability and dynamics.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
20
|
Al-Shabib NA, Khan JM, Malik A, Sen P, Ramireddy S, Chinnappan S, Alamery SF, Husain FM, Ahmad A, Choudhry H, Khan MI, Shahzad SA. Allura red rapidly induces amyloid-like fibril formation in hen egg white lysozyme at physiological pH. Int J Biol Macromol 2019; 127:297-305. [DOI: 10.1016/j.ijbiomac.2019.01.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/30/2022]
|