1
|
Silva NSM, Siebeneichler B, Oliveira CS, Dores-Silva PR, Borges JC. The regulation of the thermal stability and affinity of the HSPA5 (Grp78/BiP) by clients and nucleotides is modulated by domains coupling. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141034. [PMID: 39009203 DOI: 10.1016/j.bbapap.2024.141034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The HSPA5 protein (BiP/Grp78) serves as a pivotal chaperone in maintaining cellular protein quality control. As a member of the human HSP70 family, HSPA5 comprises two distinct domains: a nucleotide-binding domain (NBD) and a peptide-binding domain (PBD). In this study, we investigated the interdomain interactions of HSPA5, aiming to elucidate how these domains regulate its function as a chaperone. Our findings revealed that HSPA5-FL, HSPA5-T, and HSPA5-N exhibit varying affinities for ATP and ADP, with a noticeable dependency on Mg2+ for optimal interactions. Interestingly, in ADP assays, the presence of the metal ion seems to enhance NBD binding only for HSPA5-FL and HSPA5-T. Moreover, while the truncation of the C-terminus does not significantly impact the thermal stability of HSPA5, experiments involving MgATP underscore its essential role in mediating interactions and nucleotide hydrolysis. Thermal stability assays further suggested that the NBD-PBD interface enhances the stability of the NBD, more pronounced for HSPA5 than for the orthologous HSPA1A, and prevents self-aggregation through interdomain coupling. Enzymatic analyses indicated that the presence of PBD enhances NBD ATPase activity and augments its nucleotide affinity. Notably, the intrinsic chaperone activity of the PBD is dependent on the presence of the NBD, potentially due to the propensity of the PBD for self-oligomerization. Collectively, our data highlight the pivotal role of allosteric mechanisms in modulating thermal stability, nucleotide interaction, and ATPase activity of HSPA5, underscoring its significance in protein quality control within cellular environments.
Collapse
Affiliation(s)
- Noeli S M Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| | - Bruna Siebeneichler
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Carlos S Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Hsp90 and Associated Co-Chaperones of the Malaria Parasite. Biomolecules 2022; 12:biom12081018. [PMID: 35892329 PMCID: PMC9332011 DOI: 10.3390/biom12081018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite.
Collapse
|
4
|
Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021; 10:2849. [PMID: 34831072 PMCID: PMC8616389 DOI: 10.3390/cells10112849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.
Collapse
Affiliation(s)
| | | | | | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (M.L.S.); (C.C.); (M.d.V.)
| |
Collapse
|
5
|
Silva NSM, Rodrigues LFDC, Dores-Silva PR, Montanari CA, Ramos CHI, Barbosa LRS, Borges JC. Structural, thermodynamic and functional studies of human 71 kDa heat shock cognate protein (HSPA8/hHsc70). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140719. [PMID: 34571256 DOI: 10.1016/j.bbapap.2021.140719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Human 71 kDa heat shock cognate protein (HSPA8, also known as Hsc70, Hsp70-8, Hsc71, Hsp71 or Hsp73) is a constitutively expressed chaperone that is critical for cell proteostasis. In the cytosol, HSPA8 plays a pivotal role in folding and refolding, facilitates protein trafficking across membranes and targets proteins for degradation, among other functions. Here, we report an in solution study of recombinant HSPA8 (rHSPA8) using a variety of biophysical and biochemical approaches. rHSPA8 shares several structural and functional similarities with others human Hsp70s. It has two domains with different stabilities and interacts with adenosine nucleotides with dissociation constants in the low micromolar range, which were higher in the presence of Mg2+. rHSPA8 showed lower ATPase activity than its homolog HSPA5/hGrp78/hBiP, but it was 4-fold greater than that of recombinant HSPA1A/hHsp70-1A, with which it is 86% identical. Small angle X-ray scattering indicated that rHSPA8 behaved as an elongated monomeric protein in solution with dimensions similar to those observed for HSPA1A. In addition, rHSPA8 showed structural flexibility between its compacted and extended conformations. The data also indicated that HSPA8 has capacity in preventing the aggregation of model client proteins. The present study expands the understanding of the structure and activity of this chaperone and aligns with the idea that human homologous Hsp70s have divergent functions.
Collapse
Affiliation(s)
| | | | - Paulo Roberto Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Leandro Ramos Souza Barbosa
- Institute of Physics, University of São Paulo, São Paulo, SP, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Maimoni Campanella JE, Ramos Junior SL, Rodrigues Kiraly VT, Severo Gomes AA, de Barros AC, Mateos PA, Freitas FZ, de Mattos Fontes MR, Borges JC, Bertolini MC. Biochemical and biophysical characterization of the RVB-1/RVB-2 protein complex, the RuvBL/RVB homologues in Neurospora crassa. Biochimie 2021; 191:11-26. [PMID: 34375717 DOI: 10.1016/j.biochi.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
The RVB proteins, composed of the conservative paralogs, RVB1 and RVB2, belong to the AAA+ (ATPases Associated with various cellular Activities) protein superfamily and are present in archaea and eukaryotes. The most distinct structural features are their ability to interact with each other forming the RVB1/2 complex and their participation in several macromolecular protein complexes leading them to be involved in many biological processes. We report here the biochemical and biophysical characterization of the Neurospora crassa RVB-1/RVB-2 complex. Chromatographic analyses revealed that the complex (APO) predominantly exists as a dimer in solution although hexamers were also observed. Nucleotides influence the oligomerization state, while ATP favors hexamers formation, ADP favors the formation of multimeric states, likely dodecamers, and the Molecular Dynamics (MD) simulations revealed the contribution of certain amino acid residues in the nucleotide stabilization. The complex binds to dsDNA fragments and exhibits ATPase activity, which is strongly enhanced in the presence of DNA. In addition, both GFP-fused proteins are predominantly nuclear, and their nuclear localization signals (NLS) interact with importin-α (NcIMPα). Our findings show that some properties are specific of the fungus proteins despite of their high identity to orthologous proteins. They are essential proteins in N. crassa, and the phenotypic defects exhibited by the heterokaryotic strains, mainly related to growth and development, indicate N. crassa as a promising organism to investigate additional biological and structural aspects of these proteins.
Collapse
Affiliation(s)
- Jonatas Erick Maimoni Campanella
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, SP, Brazil
| | - Sergio Luiz Ramos Junior
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, USP, 13.560-970, São Carlos, SP, Brazil
| | - Vanessa Thomaz Rodrigues Kiraly
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, USP, 13.560-970, São Carlos, SP, Brazil
| | - Antoniel Augusto Severo Gomes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-689, Botucatu, SP, Brazil
| | - Andrea Coelho de Barros
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-689, Botucatu, SP, Brazil
| | - Pablo Acera Mateos
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, SP, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, SP, Brazil
| | - Marcos Roberto de Mattos Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-689, Botucatu, SP, Brazil
| | - Júlio Cesar Borges
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, USP, 13.560-970, São Carlos, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, SP, Brazil.
| |
Collapse
|
7
|
Tavella TA, da Silva NSM, Spillman N, Kayano ACAV, Cassiano GC, Vasconcelos AA, Camargo AP, da Silva DCB, Fontinha D, Salazar Alvarez LC, Ferreira LT, Peralis Tomaz KC, Neves BJ, Almeida LD, Bargieri DY, Lacerda MVGD, Lemos Cravo PV, Sunnerhagen P, Prudêncio M, Andrade CH, Pinto Lopes SC, Carazzolle MF, Tilley L, Bilsland E, Borges JC, Maranhão Costa FT. Violacein-Induced Chaperone System Collapse Underlies Multistage Antiplasmodial Activity. ACS Infect Dis 2021; 7:759-776. [PMID: 33689276 PMCID: PMC8042658 DOI: 10.1021/acsinfecdis.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.
Collapse
Affiliation(s)
- Tatyana Almeida Tavella
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Noeli Soares Melo da Silva
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Natalie Spillman
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Ana Carolina Andrade Vitor Kayano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Gustavo Capatti Cassiano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Adrielle Ayumi Vasconcelos
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Antônio Pedro Camargo
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Djane Clarys Baia da Silva
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Kaira Cristina Peralis Tomaz
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
| | - Ludimila Dias Almeida
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária “Armando Salles Oliveira”, São Paulo 05508-000, Brazil
| | | | - Pedro Vitor Lemos Cravo
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Stefanie Costa Pinto Lopes
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Leann Tilley
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Elizabeth Bilsland
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Júlio César Borges
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| |
Collapse
|
8
|
Silva NSM, Bertolino-Reis DE, Dores-Silva PR, Anneta FB, Seraphim TV, Barbosa LRS, Borges JC. Structural studies of the Hsp70/Hsp90 organizing protein of Plasmodium falciparum and its modulation of Hsp70 and Hsp90 ATPase activities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140282. [PMID: 31525467 DOI: 10.1016/j.bbapap.2019.140282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
HOP is a cochaperone belonging to the foldosome, a system formed by the cytoplasmic Hsp70 and Hsp90 chaperones. HOP acts as an adapter protein capable of transferring client proteins from the first to the second molecular chaperone. HOP is a modular protein that regulates the ATPase activity of Hsp70 and Hsp90 to perform its function. To obtain more detailed information on the structure and function of this protein, we produced the recombinant HOP of Plasmodium falciparum (PfHOP). The protein was obtained in a folded form, with a high content of α-helix secondary structure. Unfolding experiments showed that PfHOP unfolds through two transitions, suggesting the presence of at least two domains with different stabilities. In addition, PfHOP primarily behaved as an elongated dimer in equilibrium with the monomer. Small-angle X-ray scattering data corroborated this interpretation and led to the reconstruction of a PfHOP ab initio model as a dimer. Finally, the PfHOP protein was able to inhibit and to stimulate the ATPase activity of the recombinant Hsp90 and Hsp70-1, respectively, of P. falciparum. Our results deepened the knowledge of the structure and function of PfHOP and further clarified its participation in the P. falciparum foldosome.
Collapse
Affiliation(s)
- Noeli S M Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Fátima B Anneta
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Thiago V Seraphim
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Minari K, de Azevedo ÉC, Kiraly VTR, Batista FAH, de Moraes FR, de Melo FA, Nascimento AS, Gava LM, Ramos CHI, Borges JC. Thermodynamic analysis of interactions of the Hsp90 with adenosine nucleotides: A comparative perspective. Int J Biol Macromol 2019; 130:125-138. [PMID: 30797004 DOI: 10.1016/j.ijbiomac.2019.02.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Hsp90s are key proteins in cellular homeostasis since they interact with many client proteins. Several studies indicated that Hsp90s are potential targets for treating diseases, such as cancer or malaria. It has been shown that Hsp90s from different organisms have peculiarities despite their high sequence identity. Therefore, a detailed comparative analysis of several Hsp90 proteins is relevant to the overall understanding of their activity. Accordingly, the goal of this work was to evaluate the interaction of either ADP or ATP with recombinant Hsp90s from different organisms (human α and β isoforms, Plasmodium falciparum, Leishmania braziliensis, yeast and sugarcane) by isothermal titration calorimetry. The measured thermodynamic signatures of those interactions indicated that despite the high identity among all Hsp90s, they have specific thermodynamic characteristics. Specifically, the interactions with ADP are driven by enthalpy but are opposed by entropy, whereas the interaction with ATP is driven by both enthalpy and entropy. Complimentary structural and molecular dynamics studies suggested that specific interactions with ADP that differ from those with ATP may contribute to the observed enthalpies and entropies. Altogether, the data suggest that selective inhibition may be more easily achieved using analogues of the Hsp90-ADP bound state than those of Hsp90-ATP bound state.
Collapse
Affiliation(s)
- Karine Minari
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil; Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Érika Chang de Azevedo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil
| | | | | | - Fábio Rogério de Moraes
- Biosciences, Languages, and Exact Sciences Institute, Multiuser Center for Biological Innovation (CMIB), São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Fernando Alves de Melo
- Biosciences, Languages, and Exact Sciences Institute, Multiuser Center for Biological Innovation (CMIB), São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | | | - Lisandra Marques Gava
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | | | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
10
|
Costa-Martins AG, Lima L, Alves JMP, Serrano MG, Buck GA, Camargo EP, Teixeira MMG. Genome-wide identification of evolutionarily conserved Small Heat-Shock and eight other proteins bearing α-crystallin domain-like in kinetoplastid protists. PLoS One 2018; 13:e0206012. [PMID: 30346990 PMCID: PMC6197667 DOI: 10.1371/journal.pone.0206012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022] Open
Abstract
Small Heat-Shock Proteins (sHSPs) and other proteins bearing alpha-crystallin domains (ACD) participate in defense against heat and oxidative stress and play important roles in cell cycle, cytoskeleton dynamics, and immunological and pathological mechanisms in eukaryotes. However, little is known about these proteins in early-diverging lineages of protists such as the kinetoplastids. Here, ACD-like proteins (ACDp) were investigated in genomes of 61 species of 12 kinetoplastid genera, including Trypanosoma spp. (23 species of mammals, reptiles and frogs), Leishmania spp. (mammals and lizards), trypanosomatids of insects, Phytomonas spp. of plants, and bodonids. Comparison of ACDps based on domain architecture, predicted tertiary structure, phylogeny and genome organization reveals a kinetoplastid evolutionarily conserved repertoire, which diversified prior to trypanosomatid adaptation to parasitic life. We identified 9 ACDp orthologs classified in 8 families of TryACD: four previously recognized (HSP20, Tryp23A, Tryp23B and ATOM69), and four characterized for the first time in kinetoplastids (TryACDP, TrySGT1, TryDYX1C1 and TryNudC). A single copy of each ortholog was identified in each genome alongside TryNudC1/TrypNudC2 homologs and, overall, ACDPs were under strong selection pressures at main phylogenetic lineages. Transcripts of all ACDPs were identified across the life stages of T. cruzi, T. brucei and Leishmania spp., but proteomic profiles suggested that most ACDPs may be species- and stage-regulated. Our findings establish the basis for functional studies, and provided evolutionary and structural support for an underestimated repertoire of ACDps in the kinetoplastids.
Collapse
Affiliation(s)
- André G Costa-Martins
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| | - João Marcelo P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Myrna G Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| |
Collapse
|