1
|
Gennari A, Simon R, Benvenutti EV, Nicolodi S, Renard G, Chies JM, Volpato G, Volken de Souza CF. Magnetic core-shell cellulose system for the oriented immobilization of a recombinant β-galactosidase with a protein tag. Int J Biol Macromol 2024; 256:128418. [PMID: 38029902 DOI: 10.1016/j.ijbiomac.2023.128418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The objective of this study was to immobilize a recombinant β-galactosidase (Gal) tagged with a cellulose-binding domain (CBD) onto a magnetic core-shell (CS) cellulose system. After 30 min of reaction, 4 U/capsule were immobilized (CS@Gal), resulting in levels of yield and efficiency exceeding 80 %. The optimal temperature for β-galactosidase-CBD activity increased from 40 to 50 °C following oriented immobilization. The inhibitory effect of galactose decreased in the enzyme reactions catalyzed by CS@Gal, and Mg2+ increased the immobilized enzyme activity by 40 % in the magnetic CS cellulose system. The relative enzyme activity of the CS@Gal was 20 % higher than that of the soluble enzyme activity after 20 min at 50 °C. The CS support and CS@Gal capsules exhibited an average size of 8 ± 1 mm, with the structure of the shell (alginate-pectin-cellulose) enveloping and isolating the magnetic core. The immobilized β-galactosidase-CBD within the magnetic CS cellulose system retained ∼80 % of its capacity to hydrolyze lactose from skim milk after 10 reuse cycles. This study unveils a novel and promising support for the oriented immobilization of recombinant β-galactosidase using a magnetic CS system and a CBD tag. This support facilitates β-galactosidase reuse and efficient separation, consequently enhancing the catalytic properties of the enzyme.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Sabrina Nicolodi
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
2
|
Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, Sharma P, Kumar S, Lam S, Nadda AK. Mechano-chemical and biological energetics of immobilized enzymes onto functionalized polymers and their applications. Bioengineered 2022; 13:10518-10539. [PMID: 35443858 PMCID: PMC9208500 DOI: 10.1080/21655979.2022.2062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Changlei Xia
- Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry UniversityCo-Innovation, Nanjing,Jiangsu, China
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - SuShiung Lam
- Higher Institution Centre of Excellence (Hicoe), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
3
|
Gennari A, Simon R, Sperotto NDDM, Bizarro CV, Basso LA, Machado P, Benvenutti EV, Renard G, Chies JM, Volpato G, Volken de Souza CF. Application of cellulosic materials as supports for single-step purification and immobilization of a recombinant β-galactosidase via cellulose-binding domain. Int J Biol Macromol 2022; 199:307-317. [PMID: 35007635 DOI: 10.1016/j.ijbiomac.2022.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
This study aimed to develop single-step purification and immobilization processes on cellulosic supports of β-galactosidase from Kluyveromyces sp. combined with the Cellulose-Binding Domain (CBD) tag. After 15 min of immobilization, with an enzymatic load of 150 U/gsupport, expressed activity values reached 106.88 (microcrystalline cellulose), 115.03 (alkaline nanocellulose), and 108.47 IU/g (acid nanocellulose). The derivatives produced were less sensitive to the presence of galactose in comparison with the soluble purified enzyme. Among the cations assessed (Na+, K+, Mg2+, and Ca2+), magnesium provided the highest increase in the enzymatic activity of β-galactosidases immobilized on cellulosic supports. Supports and derivatives showed no cytotoxic effect on the investigated cell cultures (HepG2 and Vero). Derivatives showed high operational stability in the hydrolysis of milk lactose and retained from 53 to 64% of their hydrolysis capacity after 40 reuse cycles. This study obtained biocatalyzers with promising characteristics for application in the food industry. Biocatalyzers were obtained through a low-cost one-step sustainable bioprocess of purification and immobilization of a β-galactosidase on cellulose via CBD.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Brazil; Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Brazil
| | | | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Gaby Renard
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
4
|
Gennari A, Simon R, Sperotto NDDM, Bizarro CV, Basso LA, Machado P, Benvenutti EV, Da Cas Viegas A, Nicolodi S, Renard G, Chies JM, Volpato G, Volken de Souza CF. One-step purification of a recombinant beta-galactosidase using magnetic cellulose as a support: Rapid immobilization and high thermal stability. BIORESOURCE TECHNOLOGY 2022; 345:126497. [PMID: 34883192 DOI: 10.1016/j.biortech.2021.126497] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
For the first time, this work reported the one-step purification and targeted immobilization process of a β-galactosidase (Gal) with the Cellulose Binding Domain (CBD) tag, by binding it to different magnetic cellulose supports. The process efficiency after β-galactosidase-CBD immobilization on magnetic cellulose-based supports showed values of approximately 90% for all evaluated enzymatic loads. Compared with free Gal, derivatives showed affinity values between β-galactosidase and the substrate 1.2 × higher in the lactose hydrolysis of milk. β-Galactosidase-CBD's oriented immobilization process on supports increased the thermal stability of the immobilized enzyme by up to 7 × . After 15 cycles of reuse, both enzyme preparations showed a relative hydrolysis percentage of 50% of lactose in milk. The oriented immobilization process developed for purifying recombinant proteins containing the CBD tag enabled the execution of both steps simultaneously and quickly and the obtention of β-galactosidases with promising catalytic characteristics for application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Nathalia Denise de Moura Sperotto
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Sabrina Nicolodi
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
5
|
Nickel-Functionalized Chitosan for the Oriented Immobilization of Histidine-Tagged Enzymes: A Promising Support for Food Bioprocess Applications. Catal Letters 2022. [DOI: 10.1007/s10562-021-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Azimi SZ, Hosseini SS, Khodaiyan F. Continuous clarification of grape juice using a packed bed bioreactor including pectinase enzyme immobilized on glass beads. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Immobilization of Aspergillus oryzae β-galactosidase in cation functionalized agarose matrix and its application in the synthesis of lactulose. Int J Biol Macromol 2020; 167:1564-1574. [PMID: 33217465 DOI: 10.1016/j.ijbiomac.2020.11.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023]
Abstract
Aspergillus oryzae β-galactosidase was immobilized in in-house quaternary ammonium agarose (QAA) and used for the first time in the synthesis of lactulose. A biocatalyst was obtained with a specific activity of 24,690 IUH∙g-1; protein immobilization yield of 97% and enzyme immobilization yield of 76% were obtained at 30 °C in 10 mM phosphate buffer pH 7 for standard size agarose at 100 mgprotein∙gsupport-1 which the maximum protein load of QAA. Highest yield and specific productivity of lactulose were 0.24 g∙g-1 and 9.78 g∙g-1 h-1 respectively, obtained at pH 6, 100 IUH∙g lactose-1 enzyme/lactose ratio and 12 lactose/fructose molar ratio. In repeated-batch operation with the immobilized enzyme, the cumulative mass of lactulose per unit mass of contacted protein and cumulative specific productivity were higher than obtained with the soluble enzyme since the first batch. After enzyme activity exhaustion, the enzyme was desorbed and QAA support was reused without alteration in its maximum enzyme load capacity and without detriment in yield, productivity and selectivity in the batch synthesis of lactulose with the resulting biocatalyst. This significantly decreases the economic impact of the support, presenting itself as a distinctive advantage of immobilization by ionic interaction.
Collapse
|
8
|
Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int J Biol Macromol 2020; 167:962-986. [PMID: 33186644 DOI: 10.1016/j.ijbiomac.2020.11.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Enzymes are the highly versatile bio-catalysts having the potential for being employed in biotechnological and industrial sectors to catalyze biosynthetic reactions over a commercial point of view. Immobilization of enzymes has improved catalytic properties, retention activities, thermal and storage stabilities as well as reusabilities of enzymes in synthetic environments that have enthralled significant attention over the past few years. Dreadful efforts have been emphasized on the renewable and synthetic supports/composite materials to reserve their inherent characteristics such as biocompatibility, non-toxicity, accessibility of numerous reactive sites for profitable immobilization of biological molecules that often serve diverse applications in the pharmaceutical, environmental, and energy sectors. Supports should be endowed with unique physicochemical properties including high specific surface area, hydrophobicity, hydrophilicity, enantioselectivities, multivalent functionalization which professed them as competent carriers for enzyme immobilization. Organic, inorganic, and nano-based platforms are more potent, stable, highly recovered even after used for continuous catalytic processes, broadly renders the enzymes to get efficiently immobilized to develop an inherent bio-catalytic system that displays higher activities as compared to free-counter parts. This review highlights the recent advances or developments on renewable and synthetic matrices that are utilized for the immobilization of enzymes to deliver emerging applications around the globe.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Archana Chakravarty
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
9
|
Gennari A, Führ AJ, Volpato G, Volken de Souza CF. Magnetic cellulose: Versatile support for enzyme immobilization - A review. Carbohydr Polym 2020; 246:116646. [DOI: 10.1016/j.carbpol.2020.116646] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
|
10
|
Huang Q, Qiu J, Qiu J, Guo R, Luo L, Lin S, Zeng S. The effect of dealuminated jellyfish in mitigating toxicity on mice exposed to aluminum. Food Chem Toxicol 2020; 138:111181. [PMID: 32061729 DOI: 10.1016/j.fct.2020.111181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/12/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
In the present study, the removal effect of dealuminated jellyfish on Aluminum (Al) in mice was evaluated. The results showed that the consumption of dealuminated jellyfish significantly decreased Al accumulation in the liver of mice, indicating an Al-removing effect of dealuminated jellyfish on Al-enriched mice. In addition, the effect of dealuminated jellyfish consumption on an Al-overload model was further evaluated. The result showed that the Al content in different tissues and organs of mice was significantly reduced, but it had no significant effect on the other metallic element content. These results indicated that the samples from oral administration have a certain Al-removing effect in Al-overloaded mice. Moreover, the cluster analysis of differentially expressed proteins in blood and liver showed that a high dose of dealuminated jellyfish improve the expression of amine oxidase B and enhance the effect of Al discharge.
Collapse
Affiliation(s)
- Qun Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - JianQing Qiu
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - JinHui Qiu
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Rui Guo
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Department of Chemistry, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - LianZhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, 361023, PR China
| | - ShaoLing Lin
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - ShaoXiao Zeng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
11
|
Gennari A, Mobayed FH, Rafael RDS, Catto AL, Benvenutti EV, Rodrigues RC, Sperotto RA, Volpato G, Souza CFVD. STABILIZATION STUDY OF TETRAMERIC Kluyveromyces lactis β-GALACTOSIDASE BY IMMOBILIZATION ON IMMOBEAD: THERMAL, PHYSICO-CHEMICAL, TEXTURAL AND CATALYTIC PROPERTIES. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20190235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Brazil
| | | |
Collapse
|
12
|
He L, Lan W, Cen L, Chen S, Liu S, Liu Y, Ao X, Yang Y. Improving catalase stability by its immobilization on grass carp (Ctenopharyngodon idella) scale collagen self-assembly films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110024. [DOI: 10.1016/j.msec.2019.110024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
|
13
|
Bilal M, Iqbal HMN. Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities - A review. Food Res Int 2019; 123:226-240. [PMID: 31284972 DOI: 10.1016/j.foodres.2019.04.066] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023]
Abstract
Over the past few years, food waste has intensified much attention from the local public, national and international organizations as well as a wider household territory due to increasing environmental, social and economic concerns, climate change and scarcity of fossil fuel resources. On one aspect, food-processing waste represents a substantial ecological burden. On the other hand, these waste streams are rich in carbohydrates, proteins, and lipids, thus hold significant potential for biotransformation into an array of high-value compounds. Indeed, the high sugar, protein, and fat content render food waste streams as attractive feedstocks for enzymatic valorization given the plentiful volumes generated annually. Enzymes as industrial biocatalysts offer unique advantages over traditional chemical processes with regard to eco-sustainability, and process efficiency. Herein, an effort has been made to delineate immobilized enzyme-driven valorization of food waste streams into marketable products such as biofuels, bioactive compounds, biodegradable plastics, prebiotics, sweeteners, rare sugars, surfactants, etc. Current challenges and prospects are also highlighted with respect to the development of industrially adaptable biocatalytic systems to achieve the ultimate objectives of sustainable manufacturing combined with minimum waste generation. Applications-based strategies to enzyme immobilization are imperative to design cost-efficient and sustainable industrially applicable biocatalysts. With a deeper apprehension of support material influences, and analyzing the extreme environment, enzymes might have significant potential in improving the overall sustainability of food processing.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
14
|
Flores EEE, Cardoso FD, Siqueira LB, Ricardi NC, Costa TH, Rodrigues RC, Klein MP, Hertz PF. Influence of reaction parameters in the polymerization between genipin and chitosan for enzyme immobilization. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem 2019; 289:95-102. [DOI: 10.1016/j.foodchem.2019.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/15/2023]
|
16
|
Kluyveromyces lactis β-galactosidase immobilized on collagen: catalytic stability on batch and packed-bed reactor hydrolysis. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01598-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|