1
|
Chen L, Hu E, Shen P, Qian S, Heng W, Zhang J, Gao Y, Wei Y. Development of Amorphous Solid Dispersion Sustained-Release Formulations with Polymer Composite Matrix-Regulated Stable Release Plateaus. Pharm Res 2024; 41:1233-1245. [PMID: 38744732 DOI: 10.1007/s11095-024-03709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.
Collapse
Affiliation(s)
- Lingwu Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Jiuhua & Huayuan Pharmaceutical Co., Ltd, Chuzhou, 239000, People's Republic of China
| | - Enshi Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Peiya Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
2
|
Mohamed R, Chou SF. Physicomechanical characterizations and in vitro release studies of electrospun ethyl cellulose fibers, solvent cast carboxymethyl cellulose films, and their composites. Int J Biol Macromol 2024; 267:131374. [PMID: 38582474 DOI: 10.1016/j.ijbiomac.2024.131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Frequent change of wound dressings introduces wound inflammation and infections. In this study, we electrospun phenytoin (PHT) loaded ethyl cellulose (EC) microfibers and solvent cast tetracycline hydrochloride (TCH) loaded carboxymethyl cellulose (CMC) films with the aim to demonstrate tailorable in vitro drug release behaviors suitable for long-term use of wound dressings. Results from tensile testing showed a significant decrease in average elastic moduli from 8.8 ± 0.6 to 3.3 ± 0.3 MPa after incorporating PHT into EC fibers. PHT-loaded EC fibers displayed a slow and zero-ordered release up to 80 % of the total drug at 48 h, while TCH-loaded CMC films demonstrated a rapid and complete release within 30 min. Furthermore, drug-loaded EC/CMC composites were fabricated into fiber-in-film and fiber-on-film composites. Fiber-in-film composites showed stage release of TCH and PHT at 8 h, while fiber-on-film composites demonstrated simultaneous release of PHT and TCH with a prolonged release of TCH from CMC films. In general, electrospun PHT-loaded EC microfibers, solvent cast TCH-loaded CMC films, and their composites were studied to provide a fundamental scientific understanding on the novelty of the ability to modulate drug release characteristics based on the composite designs.
Collapse
Affiliation(s)
- Reham Mohamed
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| |
Collapse
|
3
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
4
|
Cui Y, Zhang H, Wang J. Preparation of ethyl cellulose particles with different morphologies through microfluidics. SOFT MATTER 2022; 18:1455-1462. [PMID: 35084427 DOI: 10.1039/d1sm01706c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sizes and shapes of polymer particles determine their performance and application. In this paper, ethyl cellulose particles with different morphologies are generated through extraction and solidification in a microfluidic device with double T-junctions. Droplets of ethyl acetate containing ethyl cellulose are formed first, then, pure water is employed to extract the solvents in the droplets and the ethyl cellulose is solidified to form monodisperse particles. By changing the flow rates of the continuous phase and the dispersed phase and the concentration of ethyl cellulose, red-blood-cell-like, doughnut-like, dimpled and spherical particles are fabricated, and the regime of different particle morphologies is given. The more important is that the physical mechanisms and explanations of the formation of different particle morphologies are clearly disclosed by analyzing the circulation flows outside and inside the droplets. The flow patterns in the microchannel, and the diffusion and solidification properties of the molecules are the key factors that affect the final morphology of particles. Due to the circulation, there are two stagnation points at the front and rear of the droplet, and they are the approximate locations where the dimple in the dimpled particle, the hole in the doughnut-like particle and the two pits in the red-blood-cell-like particles are formed. These analysis and results are useful in flow chemistry, in the fabrication of particle materials, and so on.
Collapse
Affiliation(s)
- Yue Cui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Haozhe Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Jingtao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, P. R. China
| |
Collapse
|
5
|
Kambayashi A, Murano M, Imai S, Miyata K, Sugita K, Fujii Y, Kinoshita M, Nomura A, Kimoto T, Miyazaki Y, Sakakibara H, Kakuda S, Tsujimoto T, Fujita Y, Kano M, Nakamura H, Akaogi S, Honda M, Anraku M, Kamada N, Ohta K, Uchida M, Kataoka M, Kikuchi H, Yamashita S, Kondo H. Interspecies differences in gastrointestinal physiology affecting the in vivo performance of oral pharmaceutical solid dosage forms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Thrivikraman Nair S, Kamalasanan K, Moidu A, Shyamsundar P, Nair LJ, P V. Ethyl cellulose coated sustained release aspirin spherules for treating COVID-19: DOE led rapid optimization using arbitrary interface; applicable for emergency situations. Int J Biol Macromol 2021; 182:1769-1784. [PMID: 34051259 PMCID: PMC8152213 DOI: 10.1016/j.ijbiomac.2021.05.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/21/2023]
Abstract
This work attempts to resolve one of the key issues related to the design and development of sustained-release spherule of aspirin for oral formulations, tailored to treat COVID-19. For that, in the Design of Experiments (DOE) an arbitrary interface, "coating efficiency" (CE) is introduced and scaled the cumulative percentage coating (CPC) to get predictable control over drug release (DR). Subsequently, the granules containing ASP are converted to spherules and then to Ethyl cellulose (EC) Coated spherules (CS) by a novel bed coating during the rolling (BCDR) process. Among spherules, one with 0.35 mm than 0.71 mm shows required properties. The CS has a low 1200 angle by Optical Microscopy (OM), smooth surface without cracks by scanning electron microscopy (SEM), and better flow properties (Angle of repose 29.69 ± 0.780, Carr's index 6.73 ± 2.24%, Hausner's Ratio 1.07 ± 0.03) than granules and spherules. Once certain structure-dependent control over release is attained (EC coated spherules shows 10% reduction in burst release (BR) than uncoated spherules showing a release of 80-91%) the predictability is achieved and Design of space (DOS) by DOE (CE-70.14%and CPC-200% and DR-61.54%) is established. The results of DOE to experimentally validated results were within 20% deviation. The aspirin is changing its crystal structure by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) from Form-I to Form-II showing polymorphism inside the drug reservoir with respect to the process. This CE and CPC approach in DOE can be used for delivery system design of other labile drugs similar to aspirin in emergency situations.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India.
| | - Ashna Moidu
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Pooja Shyamsundar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Lakshmi J Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Venkatesan P
- Department of Pharmacy, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
7
|
Ahenkorah CK, Zaitoon A, Apalangya VA, Afrane G, Lim LT. Moisture-activated release of hexanal from imidazolidine precursor encapsulated in ethylcellulose/poly(ethylene oxide) nonwoven for shelf-life extension of papaya. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Oprea M, Voicu SI. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr Polym 2020; 247:116683. [PMID: 32829811 DOI: 10.1016/j.carbpol.2020.116683] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 01/17/2023]
Abstract
Cellulose derivatives represent a viable alternative to pure cellulose due to their solubility in water and common organic solvents. This, coupled with their low cost, biocompatibility, and biodegradability, makes them an attractive choice for applications related to the biomedicine and bioanalysis area. Cellulose derivatives-based composites with improved properties were researched as films and membranes for osseointegration, hemodialysis and biosensors, smart textile fibers, tissue engineering scaffolds, hydrogels and nanoparticles for drug delivery. The different preparation strategies of these polymeric composites as well as the most recent available experimental results were described in this review. General aspects such as structure and properties of cellulose extracted from plants or bacterial sources, types of cellulose derivatives and their synthesis methods were also discussed. Finally, the future perspectives related to composites based on cellulose derivatives were highlighted and some conclusions regarding the reviewed applications were drawn.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| |
Collapse
|
9
|
Predictive engines based on pharmacokinetics modelling for tacrolimus personalized dosage in paediatric renal transplant patients. Sci Rep 2020; 10:7542. [PMID: 32371893 PMCID: PMC7200804 DOI: 10.1038/s41598-020-64189-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/10/2020] [Indexed: 01/18/2023] Open
Abstract
The development of predictive engines based on pharmacokinetic-physiological mathematical models for personalised dosage recommendations is an immature field. Nevertheless, these models are extensively applied during the design of new drugs. This study presents new advances in this subject, through a stable population of patients who underwent kidney transplantation and were prescribed tacrolimus. We developed 2 new population pharmacokinetic models based on a compartmental approach, with one following the physiologically based pharmacokinetic approach and both including circadian modulation of absorption and clearance variables. One of the major findings was an improved predictive capability for both models thanks to the consideration of circadian rhythms, both in estimating the population and in Bayesian individual customisation. This outcome confirms a plausible mechanism suggested by other authors to explain circadian patterns of tacrolimus concentrations. We also discovered significant intrapatient variability in tacrolimus levels a week after the conversion from a fast-release (Prograf) to a sustained-release formulation (Advagraf) using adaptive optimisation techniques, despite high adherence and controlled conditions. We calculated the intrapatient variability through parametric intrapatient variations, which provides a method for quantifying the mechanisms involved. We present a first application for the analysis of bioavailability changes in formulation conversion. The 2 pharmacokinetic models have demonstrated their capability as predictive engines for personalised dosage recommendations, although the physiologically based pharmacokinetic model showed better predictive behaviour.
Collapse
|
10
|
Layek B, Mandal S. Natural polysaccharides for controlled delivery of oral therapeutics: a recent update. Carbohydr Polym 2020; 230:115617. [DOI: 10.1016/j.carbpol.2019.115617] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
|
11
|
Kaur S, Sivasankaran S, Wambolt E, Jonnalagadda S. Determinants of zero-order release kinetics from acetaminophen-layered Suglet® pellets, Wurster-coated with plasticized Aquacoat® ECD (ethyl cellulose dispersion). Int J Pharm 2020; 573:118873. [DOI: 10.1016/j.ijpharm.2019.118873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
|
12
|
Wasilewska K, Winnicka K. Ethylcellulose-A Pharmaceutical Excipient with Multidirectional Application in Drug Dosage Forms Development. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3386. [PMID: 31627271 PMCID: PMC6829386 DOI: 10.3390/ma12203386] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Polymers constitute the most important group of excipients utilized in modern pharmaceutical technology, playing an essential role in the development of drug dosage forms. Synthetic, semisynthetic, and natural polymeric materials offer opportunities to overcome different formulative challenges and to design novel dosage forms for controlled release or for site-specific drug delivery. They are extensively used to design therapeutic systems, modify drug release, or mask unpleasant drug taste. Cellulose derivatives are characterized by different physicochemical properties, such as swellability, viscosity, biodegradability, pH dependency, or mucoadhesion, which determine their use in industry. One cellulose derivative with widespread application is ethylcellulose. Ethylcellulose is used in pharmaceutical technology as a coating agent, flavoring fixative, binder, filler, film-former, drug carrier, or stabilizer. The aim of this article is to provide a broad overview of ethylcellulose utilization for pharmaceutical purposes, with particular emphasis on its multidirectional role in the development of oral and topical drug dosage forms.
Collapse
Affiliation(s)
- Katarzyna Wasilewska
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland.
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland.
| |
Collapse
|
13
|
Tran TTD, Tran PHL. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug Delivery. Pharmaceutics 2019; 11:E290. [PMID: 31226748 PMCID: PMC6630634 DOI: 10.3390/pharmaceutics11060290] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Despite many available approaches for transdermal drug delivery, patient compliance and drug targeting at the desired concentration are still concerns for effective therapies. Precise and efficient film-forming systems provide great potential for controlling drug delivery through the skin with the combined advantages of films and hydrogels. The associated disadvantages of both systems (films and hydrogels) will be overcome in film-forming systems. Different strategies have been designed to control drug release through the skin, including changes to film-forming polymers, plasticizers, additives or even model drugs in formulations. In the current review, we aim to discuss the recent advances in film-forming systems to provide the principles and review the methods of these systems as applied to controlled drug release. Advances in the design of film-forming systems open a new generation of these systems.
Collapse
Affiliation(s)
- Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | | |
Collapse
|