1
|
Danait-Nabar S, Gharat K, Singhal RS. Sodium tripolyphosphate is a non-toxic and economic alternative to glutaraldehyde for preparation of L-asparaginase CLEAs to reduce acrylamide in potato fries. Food Chem 2025; 472:142894. [PMID: 39848042 DOI: 10.1016/j.foodchem.2025.142894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
L-Asparaginase CLEAs were prepared utilizing sodium tripolyphosphate (TPP) as a crosslinker (TA-CLEA). Under optimized conditions (pH 3, 0.3% TPP concentration, and a crosslinking time of 1 h), an 85% activity recovery was achieved. TA-CLEAs demonstrated superior pH stability (pH 3-8) compared to GA (glutaraldehyde)-CLEA but lost structural integrity at pH 9. TA-CLEAs were thermally more stable (concerning activity) and structurally less stable than GA-CLEA owing to the presence of weaker ionic bonds. TA-CLEAs reported an increase in apparent Km (reduced substrate affinity) and apparent Vmax values and displayed excellent reusability after 10 cycles of use (> 75%). The increase in β-sheet and random coil structures indicated a trade-off between structure stability and flexibility of the protein. TA-CLEAs reduced the acrylamide content in potato fries by 79% after 40 min of treatment time. Thus, the use of TPP as a non-toxic, economical, and biocompatible alternative to the conventionally used toxic crosslinker glutaraldehyde was demonstrated.
Collapse
Affiliation(s)
- Saaylee Danait-Nabar
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400 019, India.
| | - Krushna Gharat
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400 019, India.
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400 019, India.
| |
Collapse
|
2
|
Ulu A, Noma SAA, Kuruçay A, Topel SD, Asiltürk M, Ateş B. Design of near-infrared light induced functionalized upconverting nanoparticles as support in enzyme immobilization: Enhanced biocatalyst activity and stability. Int J Biol Macromol 2025; 302:140581. [PMID: 39900163 DOI: 10.1016/j.ijbiomac.2025.140581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
In this study, we hypothesized that the emission of upconverted nanoparticles (UCNP) can trigger PEG-L-ASNase (P-Lase) activity through Förster Resonance Energy Transfer under near-infrared (NIR) irradiation. To enhance stability and activity of P-Lase, it was immobilized on functionalized NaYF4:Yb3+, Er3+, Nd3+. Upon immobilization, the obtained NaYF4:Yb3+, Er3+, Nd3+/GPTMS-P-Lase exhibited excellent pH stability, thermal stability, metal ions or organic solvent tolerance, and storage stability. The relative activity of NaYF4:Yb3+, Er3+, Nd3+/GPTMS-P-Lase had about 65 % after 20 cycles and maintained 68 % and 59 % at +4 and 25 °C, respectively, after 4 weeks. Furthermore, in vitro cytotoxicity and hemolysis tests confirmed that the synthesized UCNPs were biocompatible. Most importantly, the activity of P-Lase was enhanced ≥4-fold under suitable NIR irradiation. It is reasonable to believe that this investigation may supply a novel technique to trigger the catalytic efficiency of P-Lase and may have promising application in leukemia treatment.
Collapse
Affiliation(s)
- Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | - Samir Abbas Ali Noma
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye; Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Bursa, Türkiye
| | - Ali Kuruçay
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Seda Demirel Topel
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Antalya Bilim University, 07190 Antalya, Türkiye
| | - Meltem Asiltürk
- Department of Material Science and Engineering, Faculty of Engineering, Akdeniz University, 07070 Antalya, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| |
Collapse
|
3
|
Danait-Nabar S, Singhal RS. Immobilization of l-asparaginase on genipin cross-linked chitosan beads shows better acrylamide diminution in cassava chips: Process optimization and characterization. J Food Sci 2024; 89:6031-6050. [PMID: 39098813 DOI: 10.1111/1750-3841.17274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Glutaraldehyde is the conventionally used cross-linker for the activation and cross-linking of support matrices used in enzyme immobilization. However, the toxic nature of glutaraldehyde makes it unsafe for food applications, propelling the need for nontoxic cross-linkers. Genipin reacts with the primary and secondary amines generating a dark-blue colored pigment and is an attractive alternative to glutaraldehyde as a cross-linker for enzyme immobilization. Apart from its excellent cross-linking properties, genipin possesses added advantages over glutaraldehyde such as proven health benefits, biocompatibility, and biodegradability. The present study explores the application of chitosan beads cross-linked with the natural and nontoxic agent, genipin, for immobilizing l-asparaginase, aimed at its subsequent use in mitigating acrylamide formation in food products. The immobilized l-asparaginase exhibited improved functionalities such as stability, reusability, and reduction in acrylamide formation in deep-fried cassava chips. One of the limitations observed during application in the food process was the mechanical fragility of the chitosan beads during speedy stirring. This can be overcome by increasing the concentration and time of contact of the coagulant bath during the formation of chitosan beads. The drying of the enzyme-bound chitosan beads will also lead to shrinkage and prevent breakage during stirring. This study conclusively demonstrated the applicability of immobilizing l-asparaginase on genipin cross-linked chitosan beads in food-related processes.
Collapse
Affiliation(s)
- Saaylee Danait-Nabar
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
4
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
5
|
Sharma I, Gupta P, Kango N. Synthesis and characterization of keratinase laden green synthesized silver nanoparticles for valorization of feather keratin. Sci Rep 2023; 13:11608. [PMID: 37463953 DOI: 10.1038/s41598-023-38721-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
This study focuses on the efficient and cost-effective synthesis of silver nanoparticles (AgNPs) using plant extracts, which have versatile and non-toxic applications. The research objectives include synthesizing AgNPs from readily available plant extracts, optimizing their production and multi scale characterization, along with exploring their use for enzyme immobilization and mitigation of poultry feather waste. Among the plant extracts tested, the flower extract of Hibiscus rosa-sinensis (HF) showed the most potential for AgNP synthesis. The synthesis of HF-mediated AgNPs was optimized using response surface methodology (RSM) for efficient and environment friendly production. Additionally, the keratinase enzyme obtained from Bacillus sp. NCIM 5802 was covalently linked to AgNPs, forming a keratinase nanocomplex (KNC) whose biochemical properties were evaluated. The KNC demonstrated optimal activity at pH 10.0 and 60 °C and it displayed remarkable stability in the presence of various inhibitors, metal ions, surfactants, and detergents. Spectroscopic techniques such as FTIR, UV-visible, and X-ray diffraction (XRD) analysis were employed to investigate the formation of biogenic HF-AgNPs and KNC, confirming the presence of capping and stabilizing agents. The morphological characteristics of the synthesized AgNPs and KNC were determined using transmission electron microscopy (TEM) and particle size analysis. The study highlighted the antimicrobial, dye scavenging, and antioxidant properties of biogenic AgNPs and KNC, demonstrating their potential for various applications. Overall, this research showcases the effectiveness of plant extract-driven green synthesis of AgNPs and the successful development of keratinase-laden nanocomplexes, opening possibilities for their use in immobilizing industrial and commercial enzymes.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Pranshi Gupta
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India.
| |
Collapse
|
6
|
Heterologous expression and molecular modelling of L-asparaginase from Bacillus subtilis ETMC-2. Int J Biol Macromol 2021; 192:28-37. [PMID: 34610352 DOI: 10.1016/j.ijbiomac.2021.09.186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
Bacterial L-asparaginase is the key therapeutic enzyme in cancer therapy and is also witnessing demand as a food processing aid. In this study, L-asparaginase of newly isolated Bacillus subtilis ETMC-2 was cloned and over-expressed in Escherichia coli as an active soluble protein using ligation independent cloning strategy. The molecular mass was estimated to be 40 kDa and was optimally active at 50 °C. Zymography revealed that the enzyme was active in homo-tetramer state (~160 KDa). The encoded protein after BLASTp analysis on NCBI showed 99.73% similarity with L-ASNase that of Bacillus sp. Physico-chemical properties were predicted using Protparam leading to categorization of the enzyme as a stable protein with an instability index (II) of 19.02. The calculated aliphatic index (85.44) indicated the high thermal stability of the protein with GRAVY value of -0.317. Protein-Ligand docking revealed that the residues Thr89, Thr121, and Asp122 were fundamental in protein-ligand complexation. After homology modelling, model validation was performed using Ramachandran plot, VERIFY3D, and RMSD. The paper describes cloning, heterologous expression, catalytic characteristics and physico-chemical properties of the type II B. subtilis L-ASNase.
Collapse
|
7
|
Alam S, Nagpal T, Singhal R, Kumar Khare S. Immobilization of L-asparaginase on magnetic nanoparticles: Kinetics and functional characterization and applications. BIORESOURCE TECHNOLOGY 2021; 339:125599. [PMID: 34303095 DOI: 10.1016/j.biortech.2021.125599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
L-asparaginase shows great potential as a food enzyme to reduce acrylamide formation in fried and baked products. But for food applications, enzymes must be stable at high temperatures and have higher catalytic efficiency. These desirable characteristics are conferred by the immobilization of enzymes on a suitable matrix. The present study aimed to immobilize the L-asparaginase enzyme on magnetic nanoparticles to reduce acrylamide content in the food system. Immobilized preparations were characterized using SEM, TEM, FTIR, UV-spectrometry, and XRD diffraction analyses. These nanoparticles enhanced the thermal stability of the enzyme up to four-fold at 70 °C compared to the free enzyme. Kinetic parameters exhibited an increase in Vmax, Km, and catalytic efficiency by ~ 38% than the free counterpart. The immobilized preparations were reusable for up to five cycles. Moreover, their application in the pre-treatment coupled with blanching of potato chips led to a significant reduction (greater than 95%) of acrylamide formation.
Collapse
Affiliation(s)
- Shahenvaz Alam
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Tanya Nagpal
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Rekha Singhal
- Food and Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Chemistry Department, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
8
|
Ulu A, Ateş B. Tailor-made shape memory stents for therapeutic enzymes: A novel approach to enhance enzyme performance. Int J Biol Macromol 2021; 185:966-982. [PMID: 34237367 DOI: 10.1016/j.ijbiomac.2021.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
Herein, our suggestion is to immobilize enzymes in-situ on absorbable shape-memory stents instead of injecting therapeutic enzymes into the blood. Chitosan (CHI)-based stents were tailored as novel support and the enzyme-immobilizing ability was elucidated using L-asparaginase (L-ASNase). For developing shape-memory stents, CHI-glycerol (GLY) solution was prepared and further blended with different ratios of polyethylene glycol (PEG), and polyvinyl alcohol (PVA). Afterward, the blends were modified by ionic crosslinking with sodium tripolyphosphate to obtain a shape-memory character. L-ASNase was included in the blends by using in-situ method before ionic crosslinking. The prepared stents, with or without L-ASNase, were comprehensively characterized by using several techniques. Collectively, immobilized L-ASNase exhibited much better performance in immobilization parameters than free one, thanks to its improved stability and reusability. For instance, CHI/GLY/PEG-3@L-ASNase retained about 70% of the initial activity after storage at 30 °C for 2 weeks, whereas the free form lost half of its initial activity. Besides, it retained 73.4% residual activity after 15 consecutive cycles. Most importantly, stent formulations exhibited ~60% activity in the bioreactor system after 4 weeks of incubation. Given the above results, shape-memory stents can be a promising candidate as a new platform for immobilization, especially in the blood circulation system.
Collapse
Affiliation(s)
- Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Turkey
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Turkey.
| |
Collapse
|
9
|
Fatty acid-peptide-bioconjugated micellar nanocarrier as a new delivery system for l-asparaginase: multi-criteria optimization, characterization, and pharmacokinetic study. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Nunes JCF, Cristóvão RO, Freire MG, Santos-Ebinuma VC, Faria JL, Silva CG, Tavares APM. Recent Strategies and Applications for l-Asparaginase Confinement. Molecules 2020; 25:E5827. [PMID: 33321857 PMCID: PMC7764279 DOI: 10.3390/molecules25245827] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
l-asparaginase (ASNase, EC 3.5.1.1) is an aminohydrolase enzyme with important uses in the therapeutic/pharmaceutical and food industries. Its main applications are as an anticancer drug, mostly for acute lymphoblastic leukaemia (ALL) treatment, and in acrylamide reduction when starch-rich foods are cooked at temperatures above 100 °C. Its use as a biosensor for asparagine in both industries has also been reported. However, there are certain challenges associated with ASNase applications. Depending on the ASNase source, the major challenges of its pharmaceutical application are the hypersensitivity reactions that it causes in ALL patients and its short half-life and fast plasma clearance in the blood system by native proteases. In addition, ASNase is generally unstable and it is a thermolabile enzyme, which also hinders its application in the food sector. These drawbacks have been overcome by the ASNase confinement in different (nano)materials through distinct techniques, such as physical adsorption, covalent attachment and entrapment. Overall, this review describes the most recent strategies reported for ASNase confinement in numerous (nano)materials, highlighting its improved properties, especially specificity, half-life enhancement and thermal and operational stability improvement, allowing its reuse, increased proteolysis resistance and immunogenicity elimination. The most recent applications of confined ASNase in nanomaterials are reviewed for the first time, simultaneously providing prospects in the described fields of application.
Collapse
Affiliation(s)
- João C. F. Nunes
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.C.F.N.); (R.O.C.); (J.L.F.)
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Raquel O. Cristóvão
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.C.F.N.); (R.O.C.); (J.L.F.)
| | - Mara G. Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Valéria C. Santos-Ebinuma
- School of Pharmaceutical Sciences, Universidade Estadual Paulista-UNESP, Araraquara 14800-903, Brazil;
| | - Joaquim L. Faria
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.C.F.N.); (R.O.C.); (J.L.F.)
| | - Cláudia G. Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.C.F.N.); (R.O.C.); (J.L.F.)
| | - Ana P. M. Tavares
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
11
|
Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int J Biol Macromol 2020; 167:962-986. [PMID: 33186644 DOI: 10.1016/j.ijbiomac.2020.11.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Enzymes are the highly versatile bio-catalysts having the potential for being employed in biotechnological and industrial sectors to catalyze biosynthetic reactions over a commercial point of view. Immobilization of enzymes has improved catalytic properties, retention activities, thermal and storage stabilities as well as reusabilities of enzymes in synthetic environments that have enthralled significant attention over the past few years. Dreadful efforts have been emphasized on the renewable and synthetic supports/composite materials to reserve their inherent characteristics such as biocompatibility, non-toxicity, accessibility of numerous reactive sites for profitable immobilization of biological molecules that often serve diverse applications in the pharmaceutical, environmental, and energy sectors. Supports should be endowed with unique physicochemical properties including high specific surface area, hydrophobicity, hydrophilicity, enantioselectivities, multivalent functionalization which professed them as competent carriers for enzyme immobilization. Organic, inorganic, and nano-based platforms are more potent, stable, highly recovered even after used for continuous catalytic processes, broadly renders the enzymes to get efficiently immobilized to develop an inherent bio-catalytic system that displays higher activities as compared to free-counter parts. This review highlights the recent advances or developments on renewable and synthetic matrices that are utilized for the immobilization of enzymes to deliver emerging applications around the globe.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Archana Chakravarty
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
12
|
Li R, Zhang Z, Pei X, Xia X. Covalent Immobilization of L-Asparaginase and Optimization of Its Enzyme Reactor for Reducing Acrylamide Formation in a Heated Food Model System. Front Bioeng Biotechnol 2020; 8:584758. [PMID: 33178677 PMCID: PMC7593842 DOI: 10.3389/fbioe.2020.584758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Acrylamide is a potent carcinogen and neurotoxin that is mainly formed by the Maillard reaction of asparagine with starch at high temperatures. In this work, a food safety immobilization system for L-asparaginase (L-ASNase) consisting of food-grade agarose (Aga) spheres and N-hydroxysuccinimide esters was developed to decrease the formation of acrylamide in a fluid food model system. L-asparaginase was successfully immobilized with a maximum immobilization efficiency of 68.43%. The immobilized enzymes exhibited superior storage stability and reusability with 93.21 and 72.25% of the initial activity retained after six consecutive cycles and storage for 28 days, indicating its high industrial application potential. Meanwhile, a simplified mathematical model of the enzyme reactor was developed and verified with experiments, which demonstrated its auxiliary role in the design and optimization of reactors. In addition, simulated fluidized food components were continuously catalyzed in the designed packed bed reactor, achieving a reduction rate of nearly 89%.
Collapse
Affiliation(s)
| | | | | | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Noma SAA, Yılmaz BS, Ulu A, Özdemir N, Ateş B. Development of l-asparaginase@hybrid Nanoflowers (ASNase@HNFs) Reactor System with Enhanced Enzymatic Reusability and Stability. Catal Letters 2020. [DOI: 10.1007/s10562-020-03362-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Immobilization of L-Asparaginase on Magnetic Nanoparticles for Cancer Treatment. Appl Biochem Biotechnol 2020; 191:1432-1443. [DOI: 10.1007/s12010-020-03276-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 01/17/2023]
|
15
|
Chand S, Mahajan RV, Prasad JP, Sahoo DK, Mihooliya KN, Dhar MS, Sharma G. A comprehensive review on microbial l-asparaginase: Bioprocessing, characterization, and industrial applications. Biotechnol Appl Biochem 2020; 67:619-647. [PMID: 31954377 DOI: 10.1002/bab.1888] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
l-Asparaginase (E.C.3.5.1.1.) is a vital enzyme that hydrolyzes l-asparagine to l-aspartic acid and ammonia. This property of l-asparaginase inhibits the protein synthesis in cancer cells, making l-asparaginase a mainstay of pediatric chemotherapy practices to treat acute lymphoblastic leukemia (ALL) patients. l-Asparaginase is also recognized as one of the important food processing agent. The removal of asparagine by l-asparaginase leads to the reduction of acrylamide formation in fried food items. l-Asparaginase is produced by various organisms including animals, plants, and microorganisms, however, only microorganisms that produce a substantial amount of this enzyme are of commercial significance. The commercial l-asparaginase for healthcare applications is chiefly derived from Escherichia coli and Erwinia chrysanthemi. A high rate of hypersensitivity and adverse reactions limits the long-term clinical use of l-asparaginase. Present review provides thorough information on microbial l-asparaginase bioprocess optimization including submerged fermentation and solid-state fermentation for l-asparaginase production, downstream purification, its characterization, and issues related to the clinical application including toxicity and hypersensitivity. Here, we have highlighted the bioprocess techniques that can produce improved and economically viable yields of l-asparaginase from promising microbial sources in the current scenario where there is an urgent need for alternate l-asparaginase with less adverse effects.
Collapse
Affiliation(s)
- Subhash Chand
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India.,Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Richi V Mahajan
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India
| | - Jai Prakash Prasad
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India
| | - Debendra K Sahoo
- Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Kanti Nandan Mihooliya
- Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Mahesh S Dhar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Girish Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.,Amity Centre for Cancer Epidemiology & Cancer Research, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
Farahat MG, Amr D, Galal A. Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6. Int J Biol Macromol 2020; 143:685-695. [DOI: 10.1016/j.ijbiomac.2019.10.258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/29/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
|
17
|
Noma SAA, Ulu A, Acet Ö, Sanz R, Sanz-Pérez ES, Odabaşı M, Ateş B. Comparative study of ASNase immobilization on tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles to enhance stability and reusability. NEW J CHEM 2020. [DOI: 10.1039/d0nj00127a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we report the preparation of tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles and their application as a carrier matrix for immobilization of ASNase, an anticancer enzyme-drug.
Collapse
Affiliation(s)
| | - Ahmet Ulu
- Department of Chemistry
- Faculty of Arts and Science
- İnönü University
- Malatya
- Turkey
| | - Ömür Acet
- Aksaray University
- Faculty of Arts and Science
- Chemistry Department
- Aksaray
- Turkey
| | - Raúl Sanz
- Department of Chemical and Environmental Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - Eloy S. Sanz-Pérez
- Department of Chemical, Energy, and Mechanical Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - Mehmet Odabaşı
- Aksaray University
- Faculty of Arts and Science
- Chemistry Department
- Aksaray
- Turkey
| | - Burhan Ateş
- Department of Chemistry
- Faculty of Arts and Science
- İnönü University
- Malatya
- Turkey
| |
Collapse
|
18
|
Tarhan T, Ulu A, Sariçam M, Çulha M, Ates B. Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization. Int J Biol Macromol 2020; 142:443-451. [DOI: 10.1016/j.ijbiomac.2019.09.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 11/24/2022]
|
19
|
Development and catalytic characterization of L-asparaginase nano-bioconjugates. Int J Biol Macromol 2019; 135:1142-1150. [DOI: 10.1016/j.ijbiomac.2019.05.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
|
20
|
Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem 2019; 289:95-102. [DOI: 10.1016/j.foodchem.2019.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/15/2023]
|