1
|
Nie X, Zuo Z, Zhang R, Luo S, Chi Y, Yuan X, Song C, Wu Y. New advances in biological preservation technology for aquatic products. NPJ Sci Food 2025; 9:15. [PMID: 39900935 PMCID: PMC11790869 DOI: 10.1038/s41538-025-00372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Aquatic products, characterized by their high moisture content, abundant nutrients, and neutral pH, create an optimal environment for the rapid proliferation of spoilage organisms, lipid oxidation, and autolytic degradation. These factors collectively expedite the spoilage and deterioration of aquatic products during storage and transportation within the supply chain. To maintain the quality and extend the shelf-life of aquatic products, appropriate preservation methods must be implemented. The growing consumer preference for bio-preservatives, is primarily driven by consumer demands for naturalness and concerns about environmental sustainability. The present review discusses commonly employed bio-preservatives derived from plants, animals, and microorganisms and their utilization in the preservation of aquatic products. Moreover, the preservation mechanisms of bio-preservatives, including antioxidant activity, inhibition of spoilage bacteria and enzyme activity, and the formation of protective films are reviewed. Integration of bio-preservation techniques with other methods, such as nanotechnology, ozone technology, and coating technology that enhance the fresh-keeping effect are discussed. Importantly, the principal issues in the application of bio-preservation technology for aquatic products and their countermeasures are presented. Further studies and the identification of new bio-preservatives that preserve the safety and quality of aquatic products should continue.
Collapse
Affiliation(s)
- Xiaobao Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| | - Zhijie Zuo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Ruichang Zhang
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, Shandong, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Xiangyang Yuan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Chengwen Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China.
| |
Collapse
|
2
|
Liu Y, Geng C, Zeng H, Kai Y, Lu Y. Chitosan coatings containing thyme essential oil enhance the quality of snakehead (Channa striata) during chilled storage verified by metabolomics approaches. J Food Sci 2024; 89:7397-7409. [PMID: 39363190 DOI: 10.1111/1750-3841.17442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/31/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
In the present study, we investigated the preservative effects of chitosan (CS) coatings, with and without thyme essential oil (TEO), combined with vacuum impregnation (VI) on maintaining the quality of snakehead fillets during chilled storage. The results showed that the VI treatment significantly inhibited drip loss, discoloration, microbial proliferation, and the accumulation of biogenic amines (BAs) in the sneakhead fillets. Compared to the control, the fillets treated with VI of 1% (w/w) CS and 1.5% (w/w) TEO (i.e., CSTEO) showed significant reductions in both psychrophiles and mesophiles, with a 2.66 log CFU/g decrease in total viable count (TVC) on day 3 and a 1.89 log CFU/g decline in TVC on day 9, respectively. In addition, the content of histamine and putrescine in the CSTEO groups was maintained at ∼1.14 and 3.23 mg/kg during the 12-day chilled storage, respectively. A total of 100 chemical compounds were tentatively identified using untargeted metabolomics approaches. The multivariate analysis further revealed that the combination of VI and CSTEO maintained fish quality mainly through preventing lipid oxidation and protein degradation. Overall, the VI-CSTEO treatment effectively maintained the fish quality during storage at 4°C, with minimum microbial proliferation and accumulation of BAs. PRACTICAL APPLICATION: The preservative effect of chitosan coatings containing thyme essential oil combined with vacuum impregnation on snakehead quality during the 12-day chilled storage was verified, and the underlying mechanisms were deciphered through integrated metabolomics approaches. Our study could provide a promising strategy for the preservation of aquatic products.
Collapse
Affiliation(s)
- Yi Liu
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | - Chenhan Geng
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | - Huiduan Zeng
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | - Yi Kai
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | - Yuyun Lu
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Zhao S, Bian Y, Zhang G, Yang G, Hou X, Gui J, Mu S, Liu S, Fang Y. Shelf-life extension of Pacific white shrimp (Litopenaeus vannamei) using sodium alginate/chitosan incorporated with cell-free supernatant of Streptococcus thermophilus FUA 329 during cold storage. J Food Sci 2024; 89:1976-1987. [PMID: 38454630 DOI: 10.1111/1750-3841.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
Seafood is highly perishable and has a short shelf-life. This study investigated the effect of chitosan and alginate (CH-SA) coating combined with the cell-free supernatant of Streptococcus thermophilus FUA329 (CFS) as a preservative on the quailty of white shrimp (Litopenaeus vannamei) refrigerated at 4° for 0, 3, 6, 9, 12, 15 days. Freshly shrimps were randomly divided into four groups: the CFS group (400 mL); the CH-SA group (1% chitosan/1% alginate); the CFS-CH-SA group (1% chitosan/1% alginate with 400 mL CFS) are treatment groups, and the control group (400 mL sterile water). The CFS-CH-SA coating effectively suppressed microbial growth total viable count and chemical accumulation (pH, total volatile basic nitrogen, thiobarbituric acid reactive substance) compared with the control. Additionally, the CFS-CH-SA coating improved the texture and sensory characteristics of shrimp during storage. The coated shrimp exhibited significantly reduced water loss (p < 0.05). The combination of CH-SA coating with CFS treatment can extend the shelf life of shrimp. PRACTICAL APPLICATION: Recently, edible films have received more consideration as a promising method to enhance the shelf life of seafood. The presence of Lactic acid bacteria metabolites in edible films reduces spoilage and improves consumer health. Our findings encourage the application of edible coating incorporated with cell-free supernatant of Streptococcus thermophilus FUA 329 to design multifubctional foods and preserve the qualities of shrimp.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yingying Bian
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Gewen Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jiajin Gui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Shuting Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
4
|
Chu Y, Ding Z, Wang J, Xie J, Ding Y. Factors affecting the quality of frozen large yellow croaker ( Pseudosciaena crocea) in cold chain logistics: Retention time and temperature fluctuation. Food Chem X 2023; 18:100742. [PMID: 37397216 PMCID: PMC10314198 DOI: 10.1016/j.fochx.2023.100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
The purpose of this study is to provide a reference for avoiding the quality loss of large yellow croaker in cold chain transportation. The effects of retention time before freezing and temperature fluctuation caused by transshipment in logistics were evaluated by TVB-N, K value, TMA value, BAs, FAAs content and protein-related characteristics. The results showed that the retention would lead to the rapid increase of TVB-N, K value, and TMA value. And the temperature fluctuation would further lead to deterioration of these indicators. We concluded that the influence of retention time was far greater than that of temperature fluctuation. In addition, the bitter free amino acids (FAAs) were highly correlated with the freshness-related indicators, which could reflect the freshness changes of samples, especially the quantity of histidine. Therefore, it is suggested to freeze samples immediately after catching and try to avoid temperature fluctuations during cold chain to maintain the quality.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Zhaoyang Ding
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jinfeng Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China
| | - Yuting Ding
- College of Food Science & Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Alves Mauricio R, Alvares Duarte Bonini Campos J, Tieko Nassu R. Meat with edible coating: acceptance, purchase intention and neophobia. Food Res Int 2022; 154:111002. [DOI: 10.1016/j.foodres.2022.111002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
|
6
|
Chitosan nano-coating incorporated with green cumin (Cuminum cyminum) extracts: an active packaging for rainbow trout (Oncorhynchus mykiss) preservation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01278-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Hussain MA, Sumon TA, Mazumder SK, Ali MM, Jang WJ, Abualreesh MH, Sharifuzzaman S, Brown CL, Lee HT, Lee EW, Hasan MT. Essential oils and chitosan as alternatives to chemical preservatives for fish and fisheries products: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Evaluation of Practical Applicability and Synergistic Effects of Bio-Based Food Packaging Materials Combined with Plant-Based Stabilisers. Processes (Basel) 2021. [DOI: 10.3390/pr9101838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Different analyses and feasibility studies have been conducted on the plant extracts of thyme (Thymus vulgaris), European horse chestnut (Aesculus hippocastanum), Nordmann fir (Abies nordmanniana), and snowdrop (Galanthus elwesii) to evaluate bio-based alternatives to common petrol-based stabilisers. For this purpose, in this study, plant extracts were incorporated into poly-lactic acid films (PLA) at different concentrations. The films’ UV absorbance and migration into packed food was analysed via photometric assays (ABTS radical cation scavenging capacity assay, β-carotene assay) and GC–MS analysis. Furthermore, the synergistic antioxidant effects of various combinations of extracts and isolated active compounds were determined. This way, antioxidant effects can be increased, allowing for a highly effective use of resources. All extracts were successfully incorporated into PLA films and showed notable photoabsorbing effects, while no migration risk was observed. Depending on extract combinations, high synergistic effects of up to 726% can be utilised to improve the effectiveness of bio-based extracts. This applies particularly to tomato paste and Aesculus hippocastanum extracts, which overall show high synergistic and antioxidant effects in combination with each other and with isolated active compounds. The study shows that it is possible to create safe bio-based antioxidant films which show even improved properties when using highlighted target combinations.
Collapse
|
9
|
De Aguiar Saldanha Pinheiro AC, Martí-Quijal FJ, Barba FJ, Tappi S, Rocculi P. Innovative Non-Thermal Technologies for Recovery and Valorization of Value-Added Products from Crustacean Processing By-Products-An Opportunity for a Circular Economy Approach. Foods 2021; 10:2030. [PMID: 34574140 PMCID: PMC8465042 DOI: 10.3390/foods10092030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The crustacean processing industry has experienced significant growth over recent decades resulting in the production of a great number of by-products. Crustacean by-products contain several valuable components such as proteins, lipids, and carotenoids, especially astaxanthin and chitin. When isolated, these valuable compounds are characterized by bioactivities such as anti-microbial, antioxidant, and anti-cancer ones, and that could be used as nutraceutical ingredients or additives in the food, pharmaceutical, and cosmetic industries. Different innovative non-thermal technologies have appeared as promising, safe, and efficient tools to recover these valuable compounds. This review aims at providing a summary of the main compounds that can be extracted from crustacean by-products, and of the results obtained by applying the main innovative non-thermal processes for recovering such high-value products. Moreover, from the perspective of the circular economy approach, specific case studies on some current applications of the recovered compounds in the seafood industry are presented. The extraction of valuable components from crustacean by-products, combined with the development of novel technological strategies aimed at their recovery and purification, will allow for important results related to the long-term sustainability of the seafood industry to be obtained. Furthermore, the reuse of extracted components in seafood products is an interesting strategy to increase the value of the seafood sector overall. However, to date, there are limited industrial applications for this promising approach.
Collapse
Affiliation(s)
- Ana Cristina De Aguiar Saldanha Pinheiro
- Department of Agricultural and Food Science, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich, 60, 47522 Cesena, FC, Italy; (A.C.D.A.S.P.); (S.T.); (P.R.)
| | - Francisco J. Martí-Quijal
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain;
| | - Silvia Tappi
- Department of Agricultural and Food Science, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich, 60, 47522 Cesena, FC, Italy; (A.C.D.A.S.P.); (S.T.); (P.R.)
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci, 336, 47521 Cesena, FC, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Science, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich, 60, 47522 Cesena, FC, Italy; (A.C.D.A.S.P.); (S.T.); (P.R.)
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci, 336, 47521 Cesena, FC, Italy
| |
Collapse
|
10
|
Šimat V, Čagalj M, Skroza D, Gardini F, Tabanelli G, Montanari C, Hassoun A, Ozogul F. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:55-118. [PMID: 34311904 DOI: 10.1016/bs.afnr.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The contribution of food in promotion of health has become of most importance. The challenges that lie before the global food supply chain, such as climate changes, food contamination, and antimicrobial resistance may compromise food safety at international scale. Compounds with strong antimicrobial and antioxidant activity can be extracted from different natural and sustainable sources and may contribute to extend the shelf life of meat and seafood products, enhance food safety and enrich foods with additional biologically active and functional ingredients. This chapter describes the use of bioprotective cultures, essential oils, plant extracts, seaweed extracts and grape pomace compounds in production of value-added meat and seafood products with improved shelf life and safety, following the requests from the market and consumers.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
11
|
Huang X, Lao Y, Pan Y, Chen Y, Zhao H, Gong L, Xie N, Mo CH. Synergistic Antimicrobial Effectiveness of Plant Essential Oil and Its Application in Seafood Preservation: A Review. Molecules 2021; 26:molecules26020307. [PMID: 33435286 PMCID: PMC7827451 DOI: 10.3390/molecules26020307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
The synergistic potential of plant essential oils (EOs) with other conventional and non-conventional antimicrobial agents is a promising strategy for increasing antimicrobial efficacy and controlling foodborne pathogens. Spoilage microorganisms are one of main concerns of seafood products, while the prevention of seafood spoilage principally requires exclusion or inactivation of microbial activity. This review provides a comprehensive overview of recent studies on the synergistic antimicrobial effect of EOs combined with other available chemicals (such as antibiotics, organic acids, and plant extracts) or physical methods (such as high hydrostatic pressure, irradiation, and vacuum-packaging) utilized to reduce the growth of foodborne pathogens and/or to extend the shelf-life of seafood products. This review highlights the synergistic ability of EOs when used as a seafood preservative, discovering the possible routes of the combined techniques for the development of a novel seafood preservation strategy.
Collapse
Affiliation(s)
- Xianpei Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Yuli Lao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China;
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yifeng Pan
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Yiping Chen
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Haiming Zhao
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
| | - Liang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Nanbin Xie
- Shanwei Marine Industry Institute, Shanwei Polytechnic, Shanwei 516600, China; (Y.P.); (Y.C.); (N.X.)
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (X.H.); (H.Z.)
- Correspondence: ; Tel.: +86-20-85223405
| |
Collapse
|
12
|
Application of hurdle technology for the shelf life extension of European eel (Anguilla anguilla) fillets. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Bahurmiz OM, Ahmad R, Ismail N, Adzitey F, Sulaiman SF. Antimicrobial Activity of Selected Essential Oils on Pseudomonas Species Associated with Spoilage of Fish with Emphasis on Cinnamon Essential Oil. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1800882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Osan Maroof Bahurmiz
- Department of Food Science and Technology, Faculty of Environmental Sciences and Marine Biology, Hadhramout University, Mukalla, Yemen
| | - Rosma Ahmad
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Noryati Ismail
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Frederick Adzitey
- Department of Animal Science, Faculty of Agriculture, University for Development Studies, Tamale, Ghana
| | | |
Collapse
|
14
|
Farsanipour A, Khodanazary A, Hosseini SM. Effect of chitosan-whey protein isolated coatings incorporated with tarragon Artemisia dracunculus essential oil on the quality of Scomberoides commersonnianus fillets at refrigerated condition. Int J Biol Macromol 2020; 155:766-771. [PMID: 32234442 DOI: 10.1016/j.ijbiomac.2020.03.228] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023]
Abstract
The purpose of present work was to assess the effects of chitosan (CH) coating in combination with whey protein isolated (WPI) and tarragon essential oil (TEO) on the bacterial (total mesophilic (TMC) bacteria and psychrotrophic (PTC) bacteria), physicochemical (total volatile bases- nitrogen (TVB-N), pH, thiobarbituric acid reactive substances (TBARS), free fatty acid (FFA)) and sensory properties of Scomberoides commersonnianus muscle during storage at refrigerator (4 ± 1 °C). The fillet were randomly divided into seven lots and subjected to the following treatments by immersion: chitosan (CH), whey protein isolate (WPI), whey protein isolate- TEO (WPI-TEO), chitosan-TEO (CH-TEO), chitosan-whey protein isolated (CH-WPI), chitosan/whey protwin isolated+ TEO (CH/WPI + TEO) and controls, then stored at 4 °C. Results indicated that incorporation of WPI and TEO into the material coating developed active coatings with good antimicrobial agent growth inhibition activity against TMC and PTC bacteria. The coated samples also retarded the increase in the contents of TVB-N, pH, TBARS and FFA during storage. The score less than critical score of 3 was made at day 8 and 12 for fillet coated with control and coated samples except of fillets coated with chitosan, respectively. These results confirmed that the incorporation of essential oils or other biopolymers into edible coatings may improve the deterioration of chilled seafood.
Collapse
Affiliation(s)
- Arezoo Farsanipour
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Ainaz Khodanazary
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Seyyed Mehdi Hosseini
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| |
Collapse
|
15
|
Li P, Chen Z, Tan M, Mei J, Xie J. Evaluation of weakly acidic electrolyzed water and modified atmosphere packaging on the shelf life and quality of farmed puffer fish (
Takifugu obscurus
) during cold storage. J Food Saf 2020. [DOI: 10.1111/jfs.12773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Zhijie Chen
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
16
|
Inanli AG, Tümerkan ETA, Abed NE, Regenstein JM, Özogul F. The impact of chitosan on seafood quality and human health: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Duan W, Huang Y, Xiao J, Zhang Y, Zhang H. Comparison of nonvolatile taste components in 18 strong fragrance spices. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1720712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Wen Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Yan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Junfei Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Yuyu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Huiying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
18
|
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019; 25:E135. [PMID: 31905753 PMCID: PMC6983128 DOI: 10.3390/molecules25010135] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product's carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
Collapse
Affiliation(s)
- Aleksandra Nešić
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | | | - Sladjana Davidović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Neda Radovanović
- Inovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institute Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
19
|
Lambrianidi L, Savvaidis IN, Tsiraki MI, El-Obeid T. Chitosan and Oregano Oil Treatments, Individually or in Combination, Used To Increase the Shelf Life of Vacuum-Packaged, Refrigerated European Eel ( Anguilla anguilla) Fillets. J Food Prot 2019; 82:1369-1376. [PMID: 31322921 DOI: 10.4315/0362-028x.jfp-19-050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the impact of chitosan and oregano essential oil (EO) individually or in combination on the quality of eel fillets in vacuum packaging (VP) and stored under refrigeration (4°C). Treatments studied were (i) control eel fillets stored in VP (E), (ii) eel fillets treated with 0.3% (v/w) oregano EO and stored in VP (E-OR), (iii) eel fillets treated with 2.0% (w/v) chitosan and stored in VP (E-CH), and (iv) eel fillets treated with 2.0% (w/v) chitosan and 0.3% (v/w) oregano EO and stored in VP (E-CH-OR). Treatments E-CH-OR and E-CH significantly reduced counts of mesophilic bacteria, Pseudomonas, Shewanella, and yeasts and molds during storage. Use of chitosan alone or in combination with oregano EO led to a significant reduction in concentrations of trimethylamine nitrogen and total volatile basic nitrogen in fillets, which led to lower concentrations of thiobarbituric acid reactive substances compared with the control samples. The eel samples in the E-CH and E-CH-OR groups were sensorially acceptable during the entire refrigerated storage period of 18 days. Presence of chitosan in the E-CH and E-CH-OR fillets did not negatively affect the taste of the fillets. E-CH fillets received a higher taste score than did E-CH-OR fillets probably because of the distinct and "spicy" lemon taste of chitosan, which was well received by the sensory panel. Based on overall sensory data (based on mean sensory scores of odor and taste), the shelf life was 6 days for the control fillets, 10 days for the E-OR fillets, and >18 days for the E-CH and E-CH-OR fillets stored in VP at 4°C. Overall, chitosan-treated eel fillets had lower microbial loads and a longer shelf life compared with the controls. Chitosan-treated eel fillets were preferred over oregano-treated fillets. Chitosan alone or in combination with oregano could be used as a preservative treatment and shelf-life extender for other seafoods.
Collapse
Affiliation(s)
- Louiza Lambrianidi
- 1 Laboratory of Food Chemistry and Food Microbiology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece (ORCID: https://orcid.org/0000-0002-0208-6819 [I.N.S.])
| | - Ioannis N Savvaidis
- 1 Laboratory of Food Chemistry and Food Microbiology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece (ORCID: https://orcid.org/0000-0002-0208-6819 [I.N.S.])
| | - Maria I Tsiraki
- 1 Laboratory of Food Chemistry and Food Microbiology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece (ORCID: https://orcid.org/0000-0002-0208-6819 [I.N.S.])
| | - Tahra El-Obeid
- 2 Department of Human Nutrition, College of Health Sciences, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| |
Collapse
|
20
|
Coating Effects of ε-Polylysine and Rosmarinic Acid Combined with Chitosan on the Storage Quality of Fresh Half-Smooth Tongue Sole (Cynoglossus semilaevis Günther) Fillets. COATINGS 2019. [DOI: 10.3390/coatings9040273] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study was to evaluate the effects of chitosan-based coating combined with rosmarinic acid (RA) with different concentrations of ε-polylysine (ε-PL) on flavor retention and sensorial properties of half-smooth tongue sole fillets during storage at 4 °C. Results showed that chitosan-based coatings combined with ε-PL and RA contributed to the reduction of off-flavor compounds, such as total volatile base nitrogen (TVB-N), trimethylamine (TMA), and ATP-related compounds, and accumulation of free amino acids (FAAs). Nineteen volatile organic compounds were analyzed by gas chromatography-mass spectrometer (GC/MS) during storage, including seven alcohols, six aldehydes, and six ketones. The coating treated fresh half-smooth tongue sole (HTS) fillets significantly reduced the relative content of off-odor volatiles, such as 1-octen-3-ol, propanal, hexanal, and octanal. According to sensory evaluation results, chitosan-based coating combined with ε-PL and RA was an effective way to maintain quality of HTS fillets during refrigerated storage.
Collapse
|
21
|
Wu T, Ge Y, Li Y, Xiang Y, Jiang Y, Hu Y. Quality enhancement of large yellow croaker treated with edible coatings based on chitosan and lysozyme. Int J Biol Macromol 2018; 120:1072-1079. [DOI: 10.1016/j.ijbiomac.2018.08.188] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/27/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
|
22
|
Grande-Tovar CD, Serio A, Delgado-Ospina J, Paparella A, Rossi C, Chaves-López C. Chitosan films incorporated with Thymus capitatus essential oil: mechanical properties and antimicrobial activity against degradative bacterial species isolated from tuna ( Thunnus sp.) and swordfish ( Xiphias gladius). Journal of Food Science and Technology 2018; 55:4256-4265. [PMID: 30228424 DOI: 10.1007/s13197-018-3364-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/26/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
Chitosan-based coatings and films have been widely studied, demonstrating to be an efficient and eco-friendly approach to extend the shelf life of food products. The effect of incorporating Thymus capitatus essential oil (TCEO) at different concentrations (0.5, 1.0, and 1.5% w/w) on physical, mechanical and antimicrobial properties of chitosan films was studied. The antimicrobial activity of the films was evaluated by agar diffusion method, against 23 spoiling microorganisms isolated from tuna and swordfish (ten Shewanella baltica, one S. morhuae, one S. putrefaciens, two Pseudomonas fluorescens, two P. fragi, five Serratia spp., one Aeromonas molluscorum, and one Acinetobacter radioresistens) and Shewanella putrefaciens ATCC 49138. The films exerted antimicrobial activity against all the tested strain, although not proportional to increasing TCEO concentration. In particular, S. baltica was the most sensitive species and the inhibition was stable after 72 h. In general, TCEO incorporation in chitosan films, significantly (p < 0.05) decreased the water permeability (from 0.577 ± 0.060 gmm/kPahm2 at 61% R.U. for chitosan to 0.487 ± 0.037 gmm/kPahm2 for the film with 1.5% TCEO), the elongation at brake (from 27.322 ± 2.35% for chitosan to 14.695 ± 3.99% for the film with 1.5% TCEO) and increased the tensile strength (from 1.697 ± 0.16% for chitosan to 19.480 ± 2.86% for the film with 1.5% TCEO). Moisture content and water contact angle of the films also showed a similar trend with TCEO introduction, because of crosslinking reaction among the polymer chains and TCEO components. Scanning electron microscopy confirmed structure-properties relationships. These results suggest chitosan films incorporated with TCEO as an alternative treatment to inhibit the growth of degradative bacteria with potential application in the fish industry. The importance of testing more than one strain of the same bacteria species to evaluate the effectiveness of chitosan-essential oils coatings was also demonstrated.
Collapse
Affiliation(s)
- Carlos David Grande-Tovar
- 1Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Kilómetro 7, Vía Puerto Colombia, Barranquilla, Colombia
| | - Annalisa Serio
- 2Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo (TE), Italy
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Universidad de San Buenaventura Cali, Cali, A.A. 7154 Colombia
| | - Antonello Paparella
- 2Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo (TE), Italy
| | - Chiara Rossi
- 2Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo (TE), Italy
| | - Clemencia Chaves-López
- 2Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo (TE), Italy
| |
Collapse
|