1
|
Yin D, Zhong Y, Hu J. Microbial polysaccharides biosynthesis and their regulatory strategies. Int J Biol Macromol 2025:143013. [PMID: 40220805 DOI: 10.1016/j.ijbiomac.2025.143013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Microbial polysaccharides hold significant potential for various applications, including food, cosmetics, petroleum, and pharmaceuticals. A deeper understanding of their biosynthetic pathways and regulatory strategies is crucial for enhancing production efficiency and reducing associated costs. To summarize synthetic biological modification strategies for microbial polysaccharides from a hierarchical perspective, this review classifies these polymers into three categories based on the depths of carried out research regarding their biosynthetic pathways and regulatory strategies, i.e., (1) microbial polysaccharides with well-elucidated biosynthetic pathways, (2) microbial polysaccharides with well-elucidated precursor sugar biosynthetic pathways but synthase-encoding genes incompletely understood, and (3) those whose biosynthesis depends on a single synthetic enzyme. We systematically summarize the biosynthetic pathways of these three categories and provide insights into yield-improvement strategies. This review aims to serve as a valuable reference for metabolic regulation of microbial polysaccharides and to facilitate future advances in their production.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Ko H, Kim H, Heo JW, Lee S, Yu Y, Kim H, Oh HS, Min CG, Baek S, Choi HS, Moon SJ, Sim W, Kim BS, Hong JS, Shim S, Kim YS. Production and application of Paenibacillus polymyxa levan as an antiviral priming agent against cucumber mosaic virus infection in tobacco plants. Carbohydr Polym 2025; 352:123208. [PMID: 39843109 DOI: 10.1016/j.carbpol.2024.123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
This study investigates the application of levan- produced from Paenibacillus polymyxa SG09-12 as an antiviral agent against cucumber mosaic virus (CMV). A high-purity microbial levan was produced and purified using diafiltration. The chemical composition, structure, and functional groups of the levan were characterised using high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Antiviral effects of the levan were evaluated in Nicotiana tabacum plants infected with CMV. Treatment with the purified levan significantly attenuated viral symptoms and reduced viral titres, demonstrating a remarkable, long-lasting antiviral effect and highlighting its potential as an antiviral agent. This antiviral effect may have been mediated by transcriptional activation of disease resistance genes encoding RPP13. These findings enhance the understanding of levan produced by Paenibacillus species and their application as an antiviral defense mechanism, which may contribute towards sustainable and environmentally friendly crop protection strategies.
Collapse
Affiliation(s)
- Hyunjun Ko
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hangil Kim
- Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sangjun Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yongtae Yu
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyebin Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyeon-Seok Oh
- Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan-Gi Min
- Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seokmin Baek
- Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han Suk Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung Jin Moon
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Woohyun Sim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byung Sup Kim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jin-Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
3
|
Chen X, Luo W, Ye X, Xu Y, Wu J, Yu Y, Peng J, Cheng L, Li L. Identification of Enzymes and Their Key Action Sites for Histamine Degradation in Mulberry Fruit Wine by Lactiplantibacillus plantarum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26404-26415. [PMID: 39536175 DOI: 10.1021/acs.jafc.4c06615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and multicopper oxidase (MCO) of Lactiplantibacillus plantarum W155 with histamine degradation ability were expressed. The mulberry fruit wine (MFW) histamine degradation abilities of GAPDH and MCO were 20.81% and 37.67%, respectively. Compared with the control group, the MFW treated by GAPDH showed higher total phenolic (1.17 g GAE/L) and total flavonoid (0.31 g RE/L) contents, while MFW treated by MCO presented similar total phenolic (1.00 g GAE/L) and total flavonoid (0.29 g RE/L) concentrations. Furthermore, the optimal pH and temperature of GAPDH were 6.0 and 40 °C, respectively, while the optimal pH and temperature of MCO were 3.0 and 50 °C, respectively. Meanwhile, the key action sites for histamine degradation of GAPDH and MCO were minded via homology modeling, molecular docking, and site-directed mutagenesis. Val209 and Ile290 were confirmed as the key action sites for GAPDH, while Qln402 and Leu420 were the pivotal action sites for MCO. Above findings indicated that both GAPDH and MCO of L. plantarum W155 could be used to control the histamine of MFW, and the key action sites of these two enzymes could be used as targets for their subsequent modification.
Collapse
Affiliation(s)
- Xiaowei Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Wenshan Luo
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Xinyi Ye
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yuanshan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jian Peng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lina Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lu Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| |
Collapse
|
4
|
Xu W, Zhang X, Ni D, Zhang W, Guang C, Mu W. A review of fructosyl-transferases from catalytic characteristics and structural features to reaction mechanisms and product specificity. Food Chem 2024; 440:138250. [PMID: 38154282 DOI: 10.1016/j.foodchem.2023.138250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Carbohydrate-active enzymes are accountable for the synthesis and degradation of glycosidic bonds among diverse carbohydrates. Fructosyl-transferases represent a subclass of these enzymes, employing sucrose as a substrate to generate fructooligosaccharides (FOS) and fructan polymers. This category primarily includes levansucrase (LS, EC 2.4.1.10), inulosucrase (IS, EC 2.4.1.9), and β-fructofuranosidase (Ffase, EC 3.2.1.26). These three enzymes possess a similar five-bladed β-propeller fold and employ an anomer-retaining reaction mechanism mediated by nucleophiles, transition state stabilizers, and general acids/bases. However, they exhibit distinct product profiles, characterized by variations in linkage specificity and molecular mass distribution. Consequently, this article comprehensively explores recent advancements in the catalytic characteristics, structural features, reaction mechanisms, and product specificity of levansucrase, inulosucrase, and β-fructofuranosidase (abbreviated as LS, IS, and Ffase, respectively). Furthermore, it discusses the potential for modifying catalytic properties and product specificity through structure-based design, which enables the rational production of custom fructan and FOS.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Bahlawan R, Karboune S, Liu L, Sahyoun AM. Investigation of biocatalytic production of lactosucrose and fructooligosaccharides using levansucrases and dairy by-products as starting materials. Enzyme Microb Technol 2023; 169:110279. [PMID: 37321016 DOI: 10.1016/j.enzmictec.2023.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Selected levansucrases (LSs) were investigated for their ability to catalyze the transfructosylation of lactose/sucrose into lactosucrose and fructooligosaccharides (FOSs). Additionally, dairy by-products, including whey permeate (WP) and milk permeate (MP), were assessed for their effectiveness as lactose sources. LSs from Gluconobacter oxydans (LS1), Vibrio natriegens (LS2), Novosphingobium aromaticivorans (LS3), and Burkholderia graminis (LS4) were utilized in three transfructosylation reactions that combined sucrose with either lactose, WP, or MP. All LSs demonstrated a higher transfructosylation activity than hydrolytic one, except for V. natriegens LS2 in the presence of sucrose and MP/sucrose. Furthermore, the bioconversion efficiency of lactose/sucrose into lactosucrose and FOSs exhibited varying time courses and end-product profiles. Both the acceptor specificity of LS and the thermodynamic equilibrium of its reaction modulated the end-product profile. V. natriegens LS2 resulted in the highest lactosucrose production of 328 and 251 g/L with lactose/sucrose and WP/sucrose, respectively. Our results revealed the potential of LS-catalyzed transfructosylation for the biocatalytic production of both lactosucrose and FOSs from abundant biomasses.
Collapse
Affiliation(s)
- Rami Bahlawan
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Amal M Sahyoun
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
6
|
Identification of a Thermostable Levansucrase from Pseudomonas orientalis That Allows Unique Product Specificity at Different Temperatures. Polymers (Basel) 2023; 15:polym15061435. [PMID: 36987215 PMCID: PMC10058814 DOI: 10.3390/polym15061435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The biological production of levan by levansucrase (LS, EC 2.4.1.10) has aroused great interest in the past few years. Previously, we identified a thermostable levansucrase from Celerinatantimonas diazotrophica (Cedi-LS). A novel thermostable LS from Pseudomonas orientalis (Psor-LS) was successfully screened using the Cedi-LS template. The Psor-LS showed maximum activity at 65 °C, much higher than the other LSs. However, these two thermostable LSs showed significantly different product specificity. When the temperature was decreased from 65 to 35 °C, Cedi-LS tended to produce high-molecular-weight (HMW) levan. By contrast, Psor-LS prefers to generate fructooligosaccharides (FOSs, DP ≤ 16) rather than HMW levan under the same conditions. Notably, at 65 °C, Psor-LS would produce HMW levan with an average Mw of 1.4 × 106 Da, indicating that a high temperature might favor the accumulation of HMW levan. In summary, this study allows a thermostable LS suitable for HMW levan and levan-type FOSs production simultaneously.
Collapse
|
7
|
Zhang X, Xu W, Ni D, Zhang W, Guang C, Mu W. Successful Manipulation of the Product Spectrum of the Erwinia amylovora Levansucrase by Modifying the Residues around loop1, Loop 3, and Loop 4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:680-689. [PMID: 36538710 DOI: 10.1021/acs.jafc.2c07891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Levansucrase (LS, EC 2.4.1.10) catalyzes the synthesis of levan by successively transferring the fructosyl moiety from sucrose to an elongated fructan chain. Although the product distribution of LS from Erwinia amylovora (Ea-LS) was studied under different sucrose concentrations, the effect of residues on the product formation is yet unknown. The first levanhexaose-complexed structure of LS from Bacillus subtilis (Bs-SacB) provided information on the oligosaccharide binding sites (OB sites), from +1 to +4 subsites. Since Ea-LS would efficiently produce fructooligosaccharides, a substitution mutation of OB sites in Bs-SacB and the corresponding residues of Ea-LS were conducted to investigate how these mutants would influence the product distribution. As a result, a series of mutants with different product spectrum were obtained. Notably, the mutants of G98E, V151F, and N200T around loop 1, loop 3, and loop 4 all showed a significant increase in both the molecular mass and the yield of high-molecular-mass levan, suggesting that the product profile of Ea-LS was significantly modified.
Collapse
Affiliation(s)
- Xiaoqi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Xu W, Ni D, Hou X, Pijning T, Guskov A, Rao Y, Mu W. Crystal Structure of Levansucrase from the Gram-Negative Bacterium Brenneria Provides Insights into Its Product Size Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5095-5105. [PMID: 35388691 DOI: 10.1021/acs.jafc.2c01225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial levansucrases (LSs, EC 2.4.1.10) have been widely studied for the synthesis of β-(2,6)-fructans (levan) from sucrose. LSs synthesize levan-type fructo-oligosaccharides, high-molecular-mass levan polymer or combinations of both. Here, we report crystal structures of LS from the G--bacterium Brenneria sp. EniD 312 (Brs-LS) in its apo form, as well as of two mutants (A154S, H327A) targeting positions known to affect LS reaction specificity. In addition, we report a structure of Brs-LS complexed with sucrose, the first crystal structure of a G--LS with a bound substrate. The overall structure of Brs-LS is similar to that of G-- and G+-LSs, with the nucleophile (D68), transition stabilizer (D225), and a general acid/base (E309) in its active site. The H327A mutant lacks an essential interaction with glucosyl moieties of bound substrates in subsite +1, explaining the observed smaller products synthesized by this mutant. The A154S mutation affects the hydrogen-bond network around the transition stabilizing residue (D225) and the nucleophile (D68), and may affect the affinity of the enzyme for sucrose such that it becomes less effective in transfructosylation. Taken together, this study provides novel insights into the roles of structural elements and residues in the product specificity of LSs.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Tjaard Pijning
- Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Albert Guskov
- Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
9
|
Ghauri K, Pijning T, Munawar N, Ali H, Ghauri MA, Anwar MA, Wallis R. Crystal structure of an inulosucrase from
Halalkalicoccus
jeotgali
B3T, a halophilic archaeal strain. FEBS J 2021. [DOI: https://doi.org/10.1111/febs.15843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Komal Ghauri
- Industrial Biotechnology Division National Institute for Biotechnology and Genetic Engineering Constituent College of Pakistan Institute of Engineering and Applied Sciences Faisalabad Pakistan
| | - Tjaard Pijning
- Department of Biomolecular X‐ray Crystallography Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen The Netherlands
| | - Nayla Munawar
- Department of Chemistry College of Sciences United Arab Emirates University Al‐Ain UAE
| | - Hazrat Ali
- Industrial Biotechnology Division National Institute for Biotechnology and Genetic Engineering Constituent College of Pakistan Institute of Engineering and Applied Sciences Faisalabad Pakistan
| | - Muhammad A. Ghauri
- Industrial Biotechnology Division National Institute for Biotechnology and Genetic Engineering Constituent College of Pakistan Institute of Engineering and Applied Sciences Faisalabad Pakistan
| | - Munir A. Anwar
- Industrial Biotechnology Division National Institute for Biotechnology and Genetic Engineering Constituent College of Pakistan Institute of Engineering and Applied Sciences Faisalabad Pakistan
| | - Russell Wallis
- Department of Respiratory Sciences Maurice Shock Medical Sciences Building University of Leicester UK
| |
Collapse
|
10
|
Ghauri K, Pijning T, Munawar N, Ali H, Ghauri MA, Anwar MA, Wallis R. Crystal structure of an inulosucrase from Halalkalicoccus jeotgali B3T, a halophilic archaeal strain. FEBS J 2021; 288:5723-5736. [PMID: 33783128 DOI: 10.1111/febs.15843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022]
Abstract
Several archaea harbor genes that code for fructosyltransferase (FTF) enzymes. These enzymes have not been characterized yet at structure-function level, but are of extreme interest in view of their potential role in the synthesis of novel compounds for food, nutrition, and pharmaceutical applications. In this study, 3D structure of an inulin-type fructan producing enzyme, inulosucrase (InuHj), from the archaeon Halalkalicoccus jeotgali was resolved in its apo form and with bound substrate (sucrose) molecule and first transglycosylation product (1-kestose). This is the first crystal structure of an FTF from halophilic archaea. Its overall five-bladed β-propeller fold is conserved with previously reported FTFs, but also shows some unique features. The InuHj structure is closer to those of Gram-negative bacteria, with exceptions such as residue E266, which is conserved in FTFs of Gram-positive bacteria and has possible role in fructan polymer synthesis in these bacteria as compared to fructooligosaccharide (FOS) production by FTFs of Gram-negative bacteria. Highly negative electrostatic surface potential of InuHj, due to a large amount of acidic residues, likely contributes to its halophilicity. The complex of InuHj with 1-kestose indicates that the residues D287 in the 4B-4C loop, Y330 in 4D-5A, and D361 in the unique α2 helix may interact with longer FOSs and facilitate the binding of longer FOS chains during synthesis. The outcome of this work will provide targets for future structure-function studies of FTF enzymes, particularly those from archaea.
Collapse
Affiliation(s)
- Komal Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Tjaard Pijning
- Department of Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Nayla Munawar
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad A Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Munir A Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Russell Wallis
- Department of Respiratory Sciences, Maurice Shock Medical Sciences Building, University of Leicester, UK
| |
Collapse
|
11
|
Cloning and Expression of Levansucrase Gene of Bacillus velezensis BM-2 and Enzymatic Synthesis of Levan. Processes (Basel) 2021. [DOI: 10.3390/pr9020317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Levan is a versatile and valuable fructose homopolymer, and a few bacterial strains have been found to produce levan. Although levan products have numerous specific functions, their application and promotion were limited by the production capacity and production cost. Bacillus velezensis BM-2 is a levan-synthesizing strain, but its levan production is too low to apply. In this study, the levansucrase gene of B. velezensis BM-2 was cloned to plasmid pET-32a-Acma-zz, and the recombinant plasmids were transferred to Escherichia coli BL21. A transformed clone was selected to express and secrete the fusion enzymes with an Acma-tag efficiently. The expressed products were further purified by a self-developed separating material called bacterial enhancer matrix (BEM) particles. The purification efficiency was 93.4%, with a specific activity of 16.589 U/mL protein. The enzymatic reaction results indicated that the optimal reaction temperature is 50 °C, the optimal pH of the acetate buffer is 5.6, and the buffer system greatly influenced the enzyme activity. The enzyme activity was enhanced to 130% in the presence of 5 mM Ca2+, K+, Zn2+, and Mn2+, whereas it was almost abolished in the case of Cu2+ and Fe3+. The values of Km, kcat, and kcat/Km were 17.41 mM, 376.83 s−1, and 21.64 mM−1s−1, respectively. The enzyme amount of 20 U/g sucrose was added to the system containing 400 g/L sucrose, and the levan products with a concentration of 120 g/L reached after an incubation of 18 h, which was 8 times that of the yield before optimization. The results of molecular docking analysis indicated that the Asp86 might act as a nucleophilic catalytic residue for sucrose, Arg246 and Asp247 act as transition state stabilizer of transfructosylation, and Glu340 and Arg306 were recognized as general acid donors. They formed the catalytic-groups triad. The unique properties and catalytic activity of the levansucrase suggest that it deserves further research and might have good industrial application prospects.
Collapse
|
12
|
González-Garcinuño Á, Tabernero A, Marcelo G, Martín Del Valle E. A comprehensive study on levan nanoparticles formation: Kinetics and self-assembly modeling. Int J Biol Macromol 2019; 147:1089-1098. [PMID: 31739059 DOI: 10.1016/j.ijbiomac.2019.10.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 10/08/2019] [Indexed: 11/15/2022]
Abstract
Levan nanoparticles formation is a complicated phenomenon involving simultaneously polymeric reaction kinetics and nanoparticles self-assembly theory. These phenomena are studied in this work with experimental and computational methodologies. Specifically, the effect of different parameters on levan kinetics and nanoparticles production in a cell-free system environment have been studied. Results point out that 37 °C is the best temperature for synthesizing levan as well as the existence of a substrate inhibition effect for polymeric reaction. This work also highlights that raffinose can be used for producing and that an increase on the ratio enzyme-substrate increases the velocity of conversion. However, the previous experimental conditions did not produce an important effect on self-assembly formed levan nanoparticles (always 110 nm) as long as the required levan concentration (CAC) for nanoparticles reorganization is achieved. To have a better understanding of these results, a model was developed to explain numerically levan kinetics and nanoparticle self-assembly. This model was built by taking into account enzyme poisoning effect (also demonstrated experimentally) and a diffusion limited cluster model for the aggregation phenomenon. Simulation results fit properly experimental data and catalytic parameters as well as predicting accurately the value of CAC for producing its reorganization into nanoparticles by self-assembly.
Collapse
Affiliation(s)
| | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, Salamanca, Spain
| | - Gema Marcelo
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, Salamanca, Spain
| | - Eva Martín Del Valle
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, Salamanca, Spain.
| |
Collapse
|
13
|
Xu W, Zhang W, Guang C, Zhang T, Mu W. A close look on the effect of polyethylene glycol on the levansucrase thermostability: a case study of Brenneria sp. levansucrase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6315-6323. [PMID: 31260112 DOI: 10.1002/jsfa.9908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND To increase the low residual activity of levansucrase during long-time processing, an enhancement of its weak thermostability is needed. Here, the effect of metal ions and polyethylene glycol (PEG) on the thermostability of levansucrase from Brenneria sp. EniD312 were studied and evaluated. The residual activity was determined and the protein structure was evaluated by circular dichroism spectrum, fluorescence intensity (FI), and surface hydrophobicity (S0 ). RESULTS As a result of incubation with 10% (w/v) PEG 4000, the enzyme activity was increased by 1.24-fold. After incubation with 5% PEG 4000 for 6 h, the residual activity at 35 and 45 °C was decreased to 55% and 60% of the initial activity, with an increase of 1.2- and 3.3-fold than the wild-type enzyme. Furthermore, the random coil content of enzyme was decreased from 53% of the wild-type enzyme to 33.9% of the PEG pre-incubated enzyme. Additionally, the FI was maximally increased and the S0 was decreased from 117 to 69. CONCLUSION All of these results suggested that after incubation with PEG 4000, the secondary and tertiary structure of wild-type enzyme could be greatly maintained and then its thermostability could be increased. This study was the first report on the enhancement of levansucrase thermostability by PEG incubation and might be a good guideline to other researches on levansucrase. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Tao X, Huang Y, Wang C, Chen F, Yang L, Ling L, Che Z, Chen X. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14325] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuan Tao
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Yukun Huang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| | - Chong Wang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Fang Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Lingling Yang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Li Ling
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Zhenming Che
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Xianggui Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| |
Collapse
|
15
|
Xu W, Peng J, Zhang W, Zhang T, Guang C, Mu W. Enhancement of the Brenneria sp. levansucrase thermostability by site-directed mutagenesis at Glu404 located at the “-TEAP-” residue motif. J Biotechnol 2019; 290:1-9. [DOI: 10.1016/j.jbiotec.2018.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/17/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023]
|
16
|
Xu W, Ni D, Zhang W, Guang C, Zhang T, Mu W. Recent advances in Levansucrase and Inulosucrase: evolution, characteristics, and application. Crit Rev Food Sci Nutr 2018; 59:3630-3647. [DOI: 10.1080/10408398.2018.1506421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Improving Thermostability and Catalytic Behavior of l-Rhamnose Isomerase from Caldicellulosiruptor obsidiansis OB47 toward d-Allulose by Site-Directed Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12017-12024. [PMID: 30370768 DOI: 10.1021/acs.jafc.8b05107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
d-Allose, a rare sugar, is an ideal table-sugar substitute and has many advantageous physiological functions. l-Rhamnose isomerase (l-RI) is an important d-allose-producing enzyme, but it exhibits comparatively low catalytic activity on d-allulose. In this study, an array of hydrophobic residues located within β1-α1-loop were solely or collectively replaced with polar amino acids by site-directed mutagenesis. A group of mutants was designed to weaken the hydrophobic environment and strengthen the catalytic behavior on d-allulose. Compared with that of the wild-type enzyme, the relative activities of the V48N/G59N/I63N and V48N/G59N/I63N/F335S mutants toward d-allulose were increased by 105.6 and 134.1%, respectively. Another group of mutants was designed to enhance thermostability. Finally, the t1/2 values of mutant S81A were increased by 7.7 and 1.1 h at 70 and 80 °C, respectively. These results revealed that site-directed mutagenesis is efficient for improving thermostability and catalytic behavior toward d-allulose.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
18
|
Peng J, Xu W, Ni D, Zhang W, Zhang T, Guang C, Mu W. Preparation of a novel water-soluble gel from Erwinia amylovora levan. Int J Biol Macromol 2018; 122:469-478. [PMID: 30342147 DOI: 10.1016/j.ijbiomac.2018.10.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 02/04/2023]
Abstract
Less attention has been focused on the industrial applications of levan-type fructan than that of inulin. Levan-type fructan is a unique homopolysaccharide consisting of fructose residues with a β-(2, 6) linkage that possesses unique physiochemical properties such as low intrinsic viscosity. In this study, the recombinant levansucrase from Erwinia amylovora was used to efficiently produce levan from sucrose, and under optimised conditions, 195 g/L levan was produced from 500 g/L sucrose, with the highest conversion rate of 59%. The physicochemical properties of E. amylovora levan, such as surface morphology, thermal behaviour, rheology behaviour and texture analysis, were evaluated and compared with those of commercial gels, including xanthan, guar, carrageenan and Arabic gums. The produced E. amylovora levan showed a series of acceptable physicochemical properties, indicating a potential application for levan as a novel water-soluble micro gel. The conclusions of this study support the exploration of the use of more hydrogels in the food, medicinal and cosmetic industries.
Collapse
Affiliation(s)
- Jiaying Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|