1
|
Cao J, Shi T, Wang Y, Wang J, Cao F, Yu P, Su E. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts as an emerging source of protein: extraction, physicochemical and functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8756-8768. [PMID: 38940359 DOI: 10.1002/jsfa.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The increasing demand for sustainable alternatives to traditional protein sources, driven by population growth, underscores the importance of protein in a healthy diet. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts are currently underutilized as plant-based proteins but hold great potential in the food industry. However, there is insufficient information available on pecan protein, particularly its protein fractions. This study aimed to explore the physicochemical and functional properties of protein isolate and the main protein fraction glutelin extracted from pecan nuts. RESULTS The results revealed that glutelin (820.67 ± 69.42 g kg-1) had a higher crude protein content compared to the protein isolate (618.43 ± 27.35 g kg-1), while both proteins exhibited amino acid profiles sufficient for adult requirements. The isoelectric points of protein isolate and glutelin were determined to be pH 4.0 and pH 5.0, respectively. The denaturation temperature of the protein isolate (90.23 °C) was higher than that of glutelin (87.43 °C), indicating a more organized and stable conformation. This is further supported by the fact that the protein isolate had a more stable main secondary structure than glutelin. Both proteins demonstrated improved solubility, emulsifying, and foaming properties at pH levels deviating from their isoelectric points in U-shaped curves. Compared to the protein isolate, glutelin displayed superior water and oil absorption capacity along with enhanced gelling ability. CONCLUSION The protein isolate and glutelin from pecan nuts exhibited improved stability and competitive functional properties, respectively. The appropriate utilization of these two proteins will support their potential as natural ingredients in various food systems. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Tingting Shi
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Jiahong Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Pengfei Yu
- Suining County Runqi Investment Co., Ltd, Xuzhou, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Zhao X, Li Q, Yuan S, Wang M, Liu H, Zhu Y. Effects of microfluidization time on the structural, physiochemical and functional properties of walnut protein. Int J Biol Macromol 2024; 282:137066. [PMID: 39481724 DOI: 10.1016/j.ijbiomac.2024.137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The effect of microfluidization treatment time under a pressure of 1 MPa on the structural, physiochemical and functional properties of walnut protein (WP) were evaluated. The results showed that the particle size of WP was significantly reduced by 102.10 % and the absolute zeta potential, solubility, water holding capacity, foaming capacity and stability increased by 336.41 %, 170.69 %, 27.67 g/g, 302.07 % and 334.23 %, respectively, when the microfluidization treatment time was 15 min (P < 0.05). And the oil holding capacity, emulsion capacity and stability of the WP increased from 1.19 g/g to 1.81 g/g, from 34.48 % and 78.82 % to 57.52 % and 98.86 %, respectively. With the extend of microfluidization treatment time, the secondary structure percentages of WP were altered. The WP after microfluidization treatment had optimal gastric digestion, while the intestine digestion was the worst. The amino acid results indicated the microfluidization treatment time did not affect the nutritional quality of WP.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China.
| | - Qin Li
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Shuo Yuan
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Meng Wang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Hongkai Liu
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
3
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
4
|
Liu L, Shi LS, Hu CY, Gong T, Yang XY, Zhang CQ, Meng YH. Walnut protein isolate based emulsion as a promising delivery system enhanced lutein bioaccessibility. Int J Biol Macromol 2024; 275:133608. [PMID: 38960249 DOI: 10.1016/j.ijbiomac.2024.133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Lutein, a natural pigment with multiple beneficial bioactivities, faces limitations in food processing due to its instability. In this study, we constructed four modified walnut protein isolate (WNPI) based emulsions as emulsion-based delivery systems (EBDS) for lutein fortification. The modification treatments enhanced the encapsulation efficiency of the WNPI-based EBDS on lutein. The modified WNPI-based EBDS exhibited improved storage and digestive stability, as well as increased lutein delivery capability in simulated gastrointestinal conditions. After in vitro digestion, the lutein retention in the modified WNPI-based EBDS was higher than in the untreated WNPI-based EBDS, with a maximum retention of 49.67 ± 1.10 % achieved after ultrasonic modification. Furthermore, the modified WNPI-based EBDS exhibited an elevated lutein bioaccessibility, reaching a maximum value of 40.49 ± 1.29 % after ultrasonic modification, nearly twice as high as the untreated WNPI-based EBDS. Molecular docking analysis indicated a robust affinity between WNPI and lutein, involving hydrogen bonds and hydrophobic interactions. Collectively, this study broadens WNPI's application and provides a foundation for fortifying other fat-soluble bioactive substances.
Collapse
Affiliation(s)
- Liang Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chao Qun Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
5
|
Kheto A, Sehrawat R, Gul K, Kumar L. Effect of extraction pH on amino acids, nutritional, in-vitro protein digestibility, intermolecular interactions, and functional properties of guar germ proteins. Food Chem 2024; 444:138628. [PMID: 38320335 DOI: 10.1016/j.foodchem.2024.138628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
The chemical compositions, intermolecular interactions, and functional properties of guar germ proteins (GGP) were investigated at different extraction pH (7 to 11). The protein efficiency ratio, essential amino acid index (46.53), predicted biological value (39.02), nutritional index (42.67), and protein purity (91.69 %) were found to be highest at pH 9. The in-vitro protein digestibility of GGP sample was highest at pH 11. From SDS-PAGE, the band intensity (<10 kDa) became thinner with an increase in extraction pH from 7 to 9 and then thicker. Meanwhile, smallest particle size and weaker ionic and hydrogen bonds were found at pH 11. The β-sheet content was more dominating in GGP samples. Moreover, higher denaturation temperatures of GGP samples indicated that protein molecules had a compact tertiary structure. Furthermore, the GGP extracted at pH 7 showed better functional properties. The principal component analysis suggested that pH 9 was more suitable for isolating GGP.
Collapse
Affiliation(s)
- Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
6
|
Yu TT, Yang FR, Su Y, Qi YH, Liu Y, Hu N. Reverse Micelles Extraction of Prolamin from Baijiu Jiuzao: Impact of Isolation Process on Protein Structure and Morphology. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2901. [PMID: 38930270 PMCID: PMC11205779 DOI: 10.3390/ma17122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Prolamins, proteins derived from plants, have extensive applications in pharmaceutics and food science. Jiuzao is a byproduct of the Baijiu brewing industry, and is a great source of prolamin. Despite its importance, knowledge regarding the extraction techniques and the properties of prolamin derived from Baijiu Jiuzao (PBJ) remains limited. Reverse micelles (RMs) extraction offers an efficient and cost-effective method for purifying proteins. In the present study, prolamin was extracted from Baijiu Jiuzao using RMs extraction and subsequently characterized in terms of its secondary structure, morphology, and particle size distribution. Our findings indicate that the purified prolamin extracted using further RMs extraction possessed higher α-helix content (+13.25%), forming a large-scale protein network, and narrower particle size distributions compared to the crude prolamin obtained by NaOH-ethanol method. This research suggests that RMs extraction has potential applications in extracting prolamin from brewing industry byproducts, offering an environmentally friendly approach to Baijiu Jiuzao recycling.
Collapse
Affiliation(s)
- Ting-Ting Yu
- College of Chemical Engineering, Sichuan University of Science and Engineering, 180 Xueyuan Road, Zigong 643000, China
| | | | | | | | | | | |
Collapse
|
7
|
Ma X, Huang C, Zheng C, Wang W, Ying H, Liu C. Effect of oil extraction methods on walnut oil quality characteristics and the functional properties of walnut protein isolate. Food Chem 2024; 438:138052. [PMID: 38006698 DOI: 10.1016/j.foodchem.2023.138052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Walnut oils were obtained by supercritical carbon dioxide extraction (SCB), cold-pressing (CP), hexane extraction (HE), and subcritical butane extraction (SBE), and walnut protein isolates (WPI) from the walnut cakes were performed. The results indicate that SCB has the highest oil yield for walnut oil, which was 62.72%, and the total content of trace nutrients (total tocopherols, total phytosterols, and total phenolic compounds) in SCB-walnut oil was also the highest at 2186.75 mg/kg, approximately 1.05 times higher than CP-walnut oil and 1.21 times higher than SBE-walnut oil. Meanwhile, the treatment of WPI with SCB results in a decrease in β-Sheet and α-Helix structures and an increase in β-Turn and Random coil structures. Thereby increasing its oil-holding capacity (OHC) and solubility by approximately 1.16 times and 1.27 times compared to CP, respectively. Interestingly, SCB as a green oil production technology, also has good prospects for retaining WPI functionality characteristics.
Collapse
Affiliation(s)
- Xuan Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chongbo Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Weijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Huang Ying
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Changsheng Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
8
|
Xu Y, He C, Zhou Z. Modulating the texture of heat-set gels of phosphorylated walnut protein isolates through Glucono-δ-lactone acidification. Food Chem 2024; 437:137734. [PMID: 37871422 DOI: 10.1016/j.foodchem.2023.137734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
The gelation of walnut protein isolates has not been extensively studied, mainly due to their inherent poor dispersity. This study investigated the gelation of alkaline-extracted walnut protein isolates (AWPI) and phosphorylated walnut protein isolates (PWPI) induced by heat treatment with glucono-δ-lactone (GDL) acidification, focusing on the impact of GDL concentrations on microstructure, rheology, and texture of the resulting gels. The PWPI gel exhibited lower hardness but a smoother structure than the AWPI gel. Notably, acidification with GDL (0.6-1.2%) significantly increased the stiffness of PWPI gels, increasing storage modulus and yield stress 10-50 times, while weakening AWPI gels. Varying concentrations of GDL effectively modulated the microstructure of the PWPI gels, leading to the altered texture (from a soft-solid state to a well-self-supporting stiff-solid gel) and water holding capacity (from approximately 46% to 85%). Additionally, hydrophobic interactions and disulfide bonds were identified as the primary forces involved in the gels.
Collapse
Affiliation(s)
- Yanfei Xu
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Changwei He
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
9
|
Pal P, Hasan SW, Abu Haija M, Sillanpää M, Banat F. Colloidal gas aphrons for biotechnology applications: a mini review. Crit Rev Biotechnol 2023; 43:971-981. [PMID: 35968911 DOI: 10.1080/07388551.2022.2092716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Colloidal gas aphrons (CGAs) are highly stable, spherical, micrometer-sized bubbles encapsulated by surfactant multilayers. They have several intriguing properties, including: high stability, large interfacial area, and the ability to maintain the same charge as their parent molecules. The physical properties of CGAs make them ideal for biotechnological applications such as the recovery of a variety of: biomolecules, particularly proteins, yeast, enzymes, and microalgae. In this review, the bio-application of CGAs for the recovery of natural components is presented, as well as: experimental results, technical challenges, and critical research directions for the future. Experimental results from the literature showed that the recovery of biomolecules was mainly determined by electrostatic or hydrophobic interactions between polyphenols and proteins (lysozyme, β-casein, β-lactoglobulin, etc.), yeast, biological molecules (gallic acid and norbixin), and microalgae with CGAs. Knowledge transfer is essential for commercializing CGA-based bio-product recovery, which will be recognized as a viable technology in the future.
Collapse
Affiliation(s)
- Priyabrata Pal
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, India
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Wen C, Zhang Z, Cao L, Liu G, Liang L, Liu X, Zhang J, Li Y, Yang X, Li S, Ren J, Xu X. Walnut Protein: A Rising Source of High-Quality Protein and Its Updated Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10525-10542. [PMID: 37399339 DOI: 10.1021/acs.jafc.3c01620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Recently, plant protein as a necessary nutrient source for human beings, a common ingredient of traditional processed food, and an important element of new functional food has gained prominence due to the increasing demand for healthy food. Walnut protein (WP) is obtained from walnut kernels and walnut oil-pressing waste and has better nutritional, functional, and essential amino acids in comparison with other vegetable and grain proteins. WP can be conveniently obtained by various extraction techniques, including alkali-soluble acid precipitation, salting-out, and ultrasonic-assisted extraction, among others. The functional properties of WP can be modified for desired purposes by using some novel methods, including free radical oxidation, enzymatic modification, high hydrostatic pressure, etc. Moreover, walnut peptides play an important biological role both in vitro and in vivo. The main activities of the walnut peptides are antihypertensive, antioxidant, learning improvement, and anticancer, among others. Furthermore, WP could be applied in the development of functional foods or dietary supplements, such as delivery systems and food additives, among others. This review summarizes recent knowledge on the nutritional, functional, and bioactive peptide aspects of WP and possible future products, providing a theoretical reference for the utilization and development of oil crop waste.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Zhiyi Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xinquan Yang
- Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dong guan 523000, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 51064, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| |
Collapse
|
11
|
Qiu M, Wang N, Pend J, Li Y, Li L, Xie X. Ultrasound-assisted reverse micelle extraction and characterization of tea protein from tea residue. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4068-4076. [PMID: 36495023 DOI: 10.1002/jsfa.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND In this study, ultrasonic-assisted reverse micelles were used to extract tea protein from tea residues. First, the extraction conditions of ultrasonic power, ionic strength and pH were optimized by response surface methodology. Then, structural comparison of ultrasonic-assisted reverse micelle extraction of tea protein (UARME) and ultrasonic-assisted alkali extraction (UAAE) were performed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and amino acid composition. RESULTS The optimum process conditions were determined as follows: ultrasonic power 300 W, KCl 0.15 mol L-1 , pH 8. The extraction rate was 46.29%, which was close to the theoretical value (46.44%). SEM showed that the protein particles extracted by UARME were smaller than those by UAAE. The results of FTIR spectroscopy showed that the protein extracted by UARME had higher α-helix, β-sheet and β-turn, and the contents were 20%, 62.3% and 17.1%, respectively. The content of random coil was 0%, which was significantly lower than that of alkali extraction, indicating that the secondary structure of protein extracted by UARME was more orderly. By comparing the amino acid composition of the two methods, the amino acid content of tea protein extracted by UARME was significantly higher than that of UAAE. CONCLUSION The biological activity of tea protein is closely related to its structure. Compared with alkali extraction, reverse micelles can better protect the secondary structure of proteins, which is of great significance for studying their functional properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minjian Qiu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Nannan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jiamin Pend
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou, China
| |
Collapse
|
12
|
Shi LS, Yang XY, Gong T, Hu CY, Shen YH, Meng YH. Ultrasonic treatment improves physical and oxidative stabilities of walnut protein isolate-based emulsion by changing protein structure. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Novel Extraction technologies for developing plant protein ingredients with improved functionality. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Deep eutectic solvents and alkaline extraction of protein from seabuckthorn seed meal: a comparison study. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zhou X, Peng X, Pei H, Chen Y, Meng H, Yuan J, Xing H, Wu Y. An overview of walnuts application as a plant-based. Front Endocrinol (Lausanne) 2022; 13:1083707. [PMID: 36589804 PMCID: PMC9797595 DOI: 10.3389/fendo.2022.1083707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
The plant-based refers to plant-based raw materials or products that are available as the source of protein and fat. Utilization and development of walnuts as a plant-based, resulting in a high-quality protein-rich walnut plant-based product: walnut protein powder and walnut peptides. Progress in research on the application of walnuts as a plant-based has been advanced, solving the problem of wasted resources and environmental pollution caused by the fact that walnut residue, a product of walnuts after oil extraction, is often thrown away as waste, or becomes animal feed or compost. This paper reviews and summarizes the research and reports on walnut plant-based at home and abroad, focusing on the application of walnut plant-based in the preparation process (enzymatic and fermentation methods) and the biological activity of the walnut protein and walnut peptide, to provide a theoretical basis for the further processing of walnuts as a walnut plant-based. It can make full use of walnut resources and play its nutritional and health care value, develop and build a series of walnut plant-based products, improve the competitiveness of walnut peptide products, turn them into treasure, and provide more powerful guidance for the development of food and medicine health industry in Yunnan.
Collapse
Affiliation(s)
- Xingjian Zhou
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xingyu Peng
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Huan Pei
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhan Chen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hui Meng
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haijing Xing
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Haijing Xing, ; Yueying Wu,
| | - Yueying Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Haijing Xing, ; Yueying Wu,
| |
Collapse
|
16
|
Zhang L, Zhang M, Sun X, Chen F, Wu Q. Effects of
AOT
reverse micelle extraction on structure and emulsifying properties of soybean protein. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lifen Zhang
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Mingzhu Zhang
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Xiaoyang Sun
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Fusheng Chen
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Qian Wu
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| |
Collapse
|
17
|
Wang J, Wang G, Chen N, An F, Zhang R, Zhang Y, Rahman MU, Zhang Y. Characterization of structural, functional and antioxidant properties and amino acid composition of pepsin-derived glutelin-1 hydrolysate from walnut processing by-products. RSC Adv 2021; 11:19158-19168. [PMID: 35478615 PMCID: PMC9033588 DOI: 10.1039/d1ra00657f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Glutelin-1 of defatted walnut meal protein (DWPG-1) was modified by pepsin enzymatic hydrolysis to improve its functional properties and antioxidant activities. The amino acid composition, structural characteristics, physicochemical and functional properties as well as antioxidant activities of the hydrolysate were compared with those of unmodified DWPG-1. The analysis of X-ray diffraction patterns, surface microstructure and particle size distribution indicated that enzymatic hydrolysis changed the structures of DWPG-1. Compared with the natural unhydrolyzed protein, the hydrolysate showed better physicochemical properties, such as surface hydrophobicity, solubility, emulsifying properties, foaming properties and water absorption capacity. In addition, the hydrolysate also exhibited significantly stronger antioxidant activities than DWPG-1. In conclusion, the results of this study prove that pepsin-mediated hydrolysis of walnut glutelin-1 can effectively modify the structure, function and antioxidant activity of DWPG-1, and could be used as an effective technology to produce bioactive multifunctional hydrolysates.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University Xi'an 710100 China
- The Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture China
| | - Guoliang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| | - Ning Chen
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University Xi'an 710100 China
| | - Feiran An
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University Xi'an 710100 China
| | - Runguang Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| | - Yufeng Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| | - Mati Ur Rahman
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| | - Youlin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University No. 620, West Chang'an Avenue, Chang'an District Xi'an 710119 P. R. China +86-29-85310517 +86-29-85310520
| |
Collapse
|
18
|
Liu L, Xi J. Mechanochemical-assisted extraction of protein from watermelon seeds with surfactant. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Kumar M, Potkule J, Patil S, Saxena S, Patil P, Mageshwaran V, Punia S, Varghese E, Mahapatra A, Ashtaputre N, Souza CD, Kennedy JF. Extraction of ultra-low gossypol protein from cottonseed: Characterization based on antioxidant activity, structural morphology and functional group analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Walnut pellicle phenolics greatly influence the extraction and structural properties of walnut protein isolates. Food Res Int 2021; 141:110163. [PMID: 33642023 DOI: 10.1016/j.foodres.2021.110163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022]
Abstract
This study investigated the effects of walnut phenolics and extraction methods on the composition and structural properties of walnut protein isolates (WPIs). Fluorescence quenching experiments showed that walnut phenolics could bind to walnut globulins, albumins, and glutelins with apparent affinity constants of 5.49 × 104 M-1, 1.71 × 104 M-1, and 3.10 × 104 M-1, respectively. However, the UV turbidity and dynamic light scattering (DLS) measurements indicated that phenolics could lead to the severe precipitation of globulins and albumins but not glutelins. The removal of pellicles could significantly increase the yield rate of salt-soluble globulins to approximately 72.8%. Furthermore, salt- and alkaline-extraction methods could produce comparable WPIs yields when using pellicle-free walnut kernels. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusive chromatography indicated that the major protein compositions of the salt- and alkaline-extracted WPIs from pellicle-free walnut kernels were similar, while alkaline-extracted WPIs from kernels with pellicles exhibited phenolic-induced protein aggregation. Fourier transform infrared (FTIR) spectroscopy indicated that WPIs produced from kernels with pellicles contained more α-helix and less β-sheet structures than WPIs produced from pellicle-free kernels. These results confirm that walnut pellicle phenolics and the extraction methods could greatly influence the composition and structural properties of WPIs.
Collapse
|
21
|
Versatility of Reverse Micelles: From Biomimetic Models to Nano (Bio)Sensor Design. Processes (Basel) 2021. [DOI: 10.3390/pr9020345] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This paper presents an overview of the principal structural and dynamics characteristics of reverse micelles (RMs) in order to highlight their structural flexibility and versatility, along with the possibility to modulate their parameters in a controlled manner. The multifunctionality in a large range of different scientific fields is exemplified in two distinct directions: a theoretical model for mimicry of the biological microenvironment and practical application in the field of nanotechnology and nano-based sensors. RMs represent a convenient experimental approach that limits the drawbacks of the conventionally biological studies in vitro, while the particular structure confers them the status of simplified mimics of cells by reproducing a complex supramolecular organization in an artificial system. The biological relevance of RMs is discussed in some particular cases referring to confinement and a crowded environment, as well as the molecular dynamics of water and a cell membrane structure. The use of RMs in a range of applications seems to be more promising due to their structural and compositional flexibility, high efficiency, and selectivity. Advances in nanotechnology are based on developing new methods of nanomaterial synthesis and deposition. This review highlights the advantages of using RMs in the synthesis of nanoparticles with specific properties and in nano (bio)sensor design.
Collapse
|
22
|
Walnut Fruit Processing Equipment: Academic Insights and Perspectives. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-020-09273-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Wang N, Wang J, Li Y, Li L, Xie XA. Reverse microemulsion prepared by AOT/CTAB/SDS/Tween80 for extraction of tea residues protein. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
The confinement of PVP in AOT microemulsions: Effect of water content and PVP concentration regime on electrical percolation phenomenon. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Reverse micellar modified mixed anionic and zwitterionic surfactant system for antibiotic extraction. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Sun X, Bandara N. Applications of reverse micelles technique in food science: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Lin X, Chen Y, Jin H, Zhao Q, Liu C, Li R, Yu F, Chen Y, Huang F, Yang Z, Ding G, Tang Y. Collagen Extracted from Bigeye Tuna ( Thunnus obesus) Skin by Isoelectric Precipitation: Physicochemical Properties, Proliferation, and Migration Activities. Mar Drugs 2019; 17:E261. [PMID: 31052462 PMCID: PMC6562556 DOI: 10.3390/md17050261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/16/2023] Open
Abstract
Collagen was extracted from bigeye tuna (Thunnus obesus) skins by salting-out (PSC-SO) and isoelectric precipitation (PSC-IP) methods. The yield of the PSC-IP product was approximately 17.17% (dry weight), which was greater than the yield obtained from PSC-SO (14.14% dry weight). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that collagen from bigeye tuna skin belongs to collagen type I. Inductively coupled plasma mass spectrometry results indicate that the heavy metal abundance in PSC-IP was lower than the maximum acceptable amounts according to Chinese regulatory standards. In addition, results from a methylthiazolyldiphenyl-tetrazolium bromide assay and an in vitro scratch assay demonstrated that PSC-IP could promote the proliferation and migration of NIH-3T3 fibroblasts. Overall, results suggest PSC-IP could be used to rapidly extract collagen from marine by-products instead of traditional salting-out methods. Collagen from bigeye tuna skin may also have strong potential for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Xinhui Lin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yinyue Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Huoxi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China.
| | - Chenjuan Liu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Renwei Li
- Zhejiang Ocean Family CO., LTD, Zhoushan 316022, China.
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Fangfang Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
- Zhejiang Changxing Pharmaceutical CO., LTD, Huzhou 313108, China.
| |
Collapse
|