1
|
Fan B, Liang X, Li Y, Li M, Yu T, Qin Y, Li B, An T, Wang G. Biosynthesis and metabolic engineering of natural sweeteners. AMB Express 2025; 15:50. [PMID: 40100508 PMCID: PMC11920521 DOI: 10.1186/s13568-025-01864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Natural sweeteners have attracted widespread attention because they are eco-friendly, healthy, low in calories, and tasty. The demand for natural sweeteners is increasing together with the popularity of green, low-carbon, sustainable development. With the development of synthetic biology, microbial cell factories have emerged as an effective method to produce large amounts of natural sweeteners. This technology has significantly progressed in recent years. This review summarizes the pathways and the enzymes related to the biosynthesis of natural sweeteners, such as mogrosides, steviol glycosides, glycyrrhizin, glycyrrhetinic acid, phlorizin, trilobatin, erythritol, sorbitol, mannitol, thaumatin, monellin, and brazzein. Moreover, it focuses on the research about the microbial production of these natural sweeteners using synthetic biology methods, aiming to provide a reference for future research on the production of natural sweeteners.
Collapse
Affiliation(s)
- Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yichi Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tongle Yu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yuan Qin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Hou Y, Zhou H, Wang C, Xie C, Tian T, Li Y, Wang W, Yu Y, Zhou T. Identification of a Flavanone 2-Hydroxylase Involved in Flavone C-Glycoside Biosynthesis from Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27417-27428. [PMID: 39620353 DOI: 10.1021/acs.jafc.4c07456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Tea contains a variety of flavone C-glycosides, which are important compounds that distinguish tea cultivars and tea categories. However, the biosynthesis pathway of flavone C-glycosides in tea plant remains unknown, and the key enzymes involved have not been characterized. In this study, a liquid chromatography-mass spectrometry method to determine 9 flavone C-glycosides was developed, and the accumulation patterns of 9 flavone C-glycosides in tea plants were examined first. Then, an entry enzyme CsF2H for flavone C-glycoside biosynthesis was identified, which had four cytochrome P450-specific conserved motifs and was targeted to the endoplasmic reticulum. Correlation analysis indicated that the expression level of CsF2H was positively correlated with all contents of 9 flavone C-glycosides. The recombinant CsF2H could convert flavanone (naringenin) into the corresponding 2-hydroxyflavonone (2-hydroxynaringenin), rather than into flavone (apigenin). Heterologous coexpression of CsF2H and CsCGT1 in yeast revealed that the substrate naringenin could be enzymatically converted to flavone mono-C-glycosides vitexin and isovitexin under the catalytic control of CsF2H and CsCGT1 following dehydration. Gene-specific antisense oligonucleotide analysis suggested that suppressing CsF2H significantly reduced the levels of 9 flavone C-glycosides. Together, CsF2H is the first key enzyme that generates flavone C-glycosides through the 2-hydroxyflavanone biosynthesis pathway in tea plants.
Collapse
Affiliation(s)
- Yihong Hou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhui Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengyang Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Tian
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Wu Y, Zhang Y, Fan H, Gao J, Shen S, Jia J, Liu R, Su P, Hu Y, Gao W, Li D. Multiple NADPH-cytochrome P450 reductases from Lycoris radiata involved in Amaryllidaceae alkaloids biosynthesis. PLANT MOLECULAR BIOLOGY 2024; 114:120. [PMID: 39485554 DOI: 10.1007/s11103-024-01516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Amaryllidaceae alkaloids (AAs), such as galanthamine and lycorine, are natural products of Lycoris radiata possessing various pharmacological activities including anti-acetylcholinesterase, anti-inflammatory, and antitumour activities. Elucidating the biosynthesis of these special AAs is crucial for understanding their production and potential modification for improved clinical application, of which cytochrome P450 enzymes catalyse the formation of key alkaloid skeletons and subsequent modification processes, with the NAPDH cytochrome P450 reductases (CPRs) serving as essential redox partners. This study identified three CPRs, LrCPR1, LrCPR2, and LrCPR3, encoding 700, 697 and 695 amino acids, respectively, which belong to Class II CPRs. The LrCPRs reduced cytochrome c and ferricyanide in an NADPH-dependent manner, and their activities all followed the typical Michaelis-Menten curve. In yeast, the co-expression of LrCPRs and CYP96T6 produced the galantamine-like alkaloid namely N-demethylnarwedine, suggesting that they support the catalytic activity of CYP96T6. Quantitative analysis of the transcriptional expression profiles showed that LrCPRs were expressed in all the examined tissues of L. radiata, and their gene expression patterns are consistent with other genes that may be involved in the biosynthetic pathway of AAs, including cinnamate 4-hydroxylase and phenylalanine ammonia-lyase. Our study firstly provides the functional characterization of LrCPRs in L. radiata, which will contribute to the discovery of biosynthetic pathways and heterologous production of AAs.
Collapse
Affiliation(s)
- Yuqing Wu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yifeng Zhang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haitong Fan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jie Gao
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Siyu Shen
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jifan Jia
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Rong Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ping Su
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Chen W, Lin X, Wang Y, Mu D, Mo C, Huang H, Zhao H, Luo Z, Liu D, Wilson IW, Qiu D, Tang Q. Selection of Reference Genes in Siraitia siamensis and Expression Patterns of Genes Involved in Mogrosides Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2449. [PMID: 39273933 PMCID: PMC11396801 DOI: 10.3390/plants13172449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Siraitia siamensis is a traditional Chinese medicinal herb. In this study, using S. siamensis cultivated in vitro, twelve candidate reference genes under various treatments were analyzed for their expression stability by using algorithms such as GeNorm, NormFinder, BestKeeper, Delta CT, and RefFinder. The selected reference genes were then used to characterize the gene expression of cucurbitadienol synthase, which is a rate-limiting enzyme for mogroside biosynthesis. The results showed that CDC6 and NCBP2 expression was the most stable across all treatments and are the best reference genes under the tested conditions. Utilizing the validated reference genes, we analyzed the expression profiles of genes related to the synthesis pathway of mogroside in S. siamensis in response to a range of abiotic stresses. The findings of this study provide clear standards for gene expression normalization in Siraitia plants and exploring the rationale behind differential gene expression related to mogroside synthesis pathways.
Collapse
Affiliation(s)
- Wenqiang Chen
- Yuelushan Lab, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiaodong Lin
- Yuelushan Lab, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yan Wang
- Yuelushan Lab, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Detian Mu
- Yuelushan Lab, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huaxue Huang
- Hunan Huacheng Biotech, Inc., High-Tech Zone, Changsha 410205, China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Dai Liu
- Hunan Huacheng Biotech, Inc., High-Tech Zone, Changsha 410205, China
| | - Iain W Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qi Tang
- Yuelushan Lab, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Guo Y, Chen X, Gong P, Long H, Wang J, Yang W, Yao W. Siraitia grosvenorii As a Homologue of Food and Medicine: A Review of Biological Activity, Mechanisms of Action, Synthetic Biology, and Applications in Future Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6850-6870. [PMID: 38513114 DOI: 10.1021/acs.jafc.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Siraitia grosvenorii (SG), also known as Luo Han Guo or Monk fruit, boasts a significant history in food and medicine. This review delves into SG's historical role and varied applications in traditional Chinese culture, examining its phytochemical composition and the health benefits of its bioactive compounds. It further explores SG's biological activities, including antioxidant, anti-inflammatory, and antidiabetic properties and elucidates the mechanisms behind these effects. The review also highlights recent synthetic biology advances in enhancing the production of SG's bioactive compounds, presenting new opportunities for broadening their availability. Ultimately, this review emphasizes SG's value in food and medicine, showcasing its historical and cultural importance, phytochemistry, biological functions, action mechanisms, and the role of synthetic biology in its sustainable use.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Tamang A, Kaur A, Thakur D, Thakur A, Thakur BK, Shivani, Swarnkar M, Pal PK, Hallan V, Pandey SS. Unraveling endophytic diversity in dioecious Siraitia grosvenorii: implications for mogroside production. Appl Microbiol Biotechnol 2024; 108:247. [PMID: 38427084 PMCID: PMC10907472 DOI: 10.1007/s00253-024-13076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Host and tissue-specificity of endophytes are important attributes that limit the endophyte application on multiple crops. Therefore, understanding the endophytic composition of the targeted crop is essential, especially for the dioecious plants where the male and female plants are different. Here, efforts were made to understand the endophytic bacterial composition of the dioecious Siraitia grosvenorii plant using 16S rRNA amplicon sequencing. The present study revealed the association of distinct endophytic bacterial communities with different parts of male and female plants. Roots of male and female plants had a higher bacterial diversity than other parts of plants, and the roots of male plants had more bacterial diversity than the roots of female plants. Endophytes belonging to the phylum Proteobacteria were abundant in all parts of male and female plants except male stems and fruit pulp, where the Firmicutes were most abundant. Class Gammaproteobacteria predominated in both male and female plants, with the genus Acinetobacter as the most dominant and part of the core microbiome of the plant (present in all parts of both, male and female plants). The presence of distinct taxa specific to male and female plants was also identified. Macrococcus, Facklamia, and Propionibacterium were the distinct genera found only in fruit pulp, the edible part of S. grosvenorii. Predictive functional analysis revealed the abundance of enzymes of secondary metabolite (especially mogroside) biosynthesis in the associated endophytic community with predominance in roots. The present study revealed bacterial endophytic communities of male and female S. grosvenorii plants that can be further explored for monk fruit cultivation, mogroside production, and early-stage identification of male and female plants. KEY POINTS: • Male and female Siraitia grosvenorii plants had distinct endophytic communities • The diversity of endophytic communities was specific to different parts of plants • S. grosvenorii-associated endophytes may be valuable for mogroside biosynthesis and monk fruit cultivation.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amanpreet Kaur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Deepali Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Ankita Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babit Kumar Thakur
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivani
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Probir K Pal
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Liao Y, Du W, Wan J, Fan J, Pi J, Wu M, Wei Y, Ouyang Z. Mining and functional characterization of NADPH-cytochrome P450 reductases of the DNJ biosynthetic pathway in mulberry leaves. BMC PLANT BIOLOGY 2024; 24:133. [PMID: 38395770 PMCID: PMC10885410 DOI: 10.1186/s12870-024-04815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND 1-Deoxynojirimycin (DNJ), the main active ingredient in mulberry leaves, with wide applications in the medicine and food industries due to its significant functions in lowering blood sugar, and lipids, and combating viral infections. Cytochrome P450 is a key enzyme for DNJ biosynthesis, its activity depends on the electron supply of NADPH-cytochrome P450 reductases (CPRs). However, the gene for MaCPRs in mulberry leaves remains unknown. RESULTS In this study, we successfully cloned and functionally characterized two key genes, MaCPR1 and MaCPR2, based on the transcriptional profile of mulberry leaves. The MaCPR1 gene comprised 2064 bp, with its open reading frame (ORF) encoding 687 amino acids. The MaCPR2 gene comprised 2148 bp, and its ORF encoding 715 amino acids. The phylogenetic tree indicates that MaCPR1 and MaCPR2 belong to Class I and Class II, respectively. In vitro, we found that the recombinant enzymes MaCPR2 protein could reduce cytochrome c and ferricyanide using NADPH as an electron donor, while MaCPR1 did not. In yeast, heterologous co-expression indicates that MaCPR2 delivers electrons to MaC3'H hydroxylase, a key enzyme catalyzing the production of chlorogenic acid from 3-O-p-coumaroylquinic acid. CONCLUSIONS These findings highlight the orchestration of hydroxylation process mediated by MaCPR2 during the biosynthesis of secondary metabolite biosynthesis in mulberry leaves. These results provided a foundational understanding for fully elucidating the DNJ biosynthetic pathway within mulberry leaves.
Collapse
Affiliation(s)
- Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Wenmin Du
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jiahe Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jilan Pi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Min Wu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China.
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China.
| |
Collapse
|
8
|
Thakur K, Partap M, Kumar P, Sharma R, Warghat AR. Understandings of bioactive composition, molecular regulation, and biotechnological interventions in the development and usage of specialized metabolites as health-promoting substances in Siraitia grosvenorii (Swingle) C. Jeffrey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Wang S, Xu X, Lv X, Liu Y, Li J, Du G, Liu L. Construction and Optimization of the de novo Biosynthesis Pathway of Mogrol in Saccharomyces Cerevisiae. Front Bioeng Biotechnol 2022; 10:919526. [PMID: 35711645 PMCID: PMC9197265 DOI: 10.3389/fbioe.2022.919526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mogrol plays important roles in antihyperglycemic and antilipidemic through activating the AMP-activated protein kinase pathway. Although the synthesis pathway of mogrol in Siraitia grosvenorii has been clarified, few studies have focused on improving mogrol production. This study employed a modular engineerin g strategy to improve mogrol production in a yeast chassis cell. First, a de novo synthesis pathway of mogrol in Saccharomyces cerevisiae was constructed. Then, the metabolic flux of each synthetic module in mogrol metabolism was systematically optimized, including the enhancement of the precursor supply, inhibition of the sterol synthesis pathway using the Clustered Regularly Interspaced Short Palindromic Repeats Interference system (CRISPRi), and optimization of the expression and reduction system of P450 enzymes. Finally, the mogrol titer was increased to 9.1 μg/L, which was 455-fold higher than that of the original strain. The yeast strains engineered in this work can serve as the basis for creating an alternative way for mogrol production in place of extraction from S. grosvenorii.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Kores K, Kolenc Z, Furlan V, Bren U. Inverse Molecular Docking Elucidating the Anticarcinogenic Potential of the Hop Natural Product Xanthohumol and Its Metabolites. Foods 2022; 11:foods11091253. [PMID: 35563976 PMCID: PMC9104229 DOI: 10.3390/foods11091253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Natural products from plants exert a promising potential to act as antioxidants, antimicrobials, anti-inflammatory, and anticarcinogenic agents. Xanthohumol, a natural compound from hops, is indeed known for its anticarcinogenic properties. Xanthohumol is converted into three metabolites: isoxanthohumol (non-enzymatically) as well as 8- and 6-prenylnaringenin (enzymatically). An inverse molecular docking approach was applied to xanthohumol and its three metabolites to discern their potential protein targets. The aim of our study was to disclose the potential protein targets of xanthohumol and its metabolites in order to expound on the potential anticarcinogenic mechanisms of xanthohumol based on the found target proteins. The investigated compounds were docked into the predicted binding sites of all human protein structures from the Protein Data Bank, and the best docking poses were examined. Top scoring human protein targets with successfully docked compounds were identified, and their experimental connection with the anticarcinogenic function or cancer was investigated. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using retrospective metrics. More than half of the human protein targets of xanthohumol with the highest docking scores have already been connected with the anticarcinogenic function, and four of them (including two important representatives of the matrix metalloproteinase family, MMP-2 and MMP-9) also have a known experimental correlation with xanthohumol. Another important protein target is acyl-protein thioesterase 2, to which xanthohumol, isoxanthohumol, and 6-prenylnaringenin were successfully docked with the lowest docking scores. Moreover, the results for the metabolites show that their most promising protein targets are connected with the anticarcinogenic function as well. We firmly believe that our study can help to elucidate the anticarcinogenic mechanisms of xanthohumol and its metabolites as after consumption, all four compounds can be simultaneously present in the organism.
Collapse
Affiliation(s)
- Katarina Kores
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Zala Kolenc
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Veronika Furlan
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Correspondence: ; Tel.: +386-2-229-4421
| |
Collapse
|
11
|
Huang R, Liu L, He X, Wang W, Hou Y, Chen J, Li Y, Zhou H, Tian T, Wang W, Xu Q, Yu Y, Zhou T. Isolation and Functional Characterization of Multiple NADPH-Cytochrome P450 Reductase Genes from Camellia sinensis in View of Catechin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14926-14937. [PMID: 34859673 DOI: 10.1021/acs.jafc.1c04255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catechins are critical constituents for the sensory quality and health-promoting benefits of tea. Cytochrome P450 monooxygenases are required for catechin biosynthesis and are dependent on NADPH-cytochrome P450 reductases (CPRs) to provide reducing equivalents for their activities. However, CPRs have not been identified in tea, and their relationship to catechin accumulation also remains unknown. Thus, three CsCPR genes were identified in this study, all of which had five CPR-related conserved domains and were targeted to the endoplasmic reticulum. These three recombinant CsCPR proteins could reduce cytochrome c using NADPH as an electron donor. Heterologous co-expression in yeast demonstrated that all the three CsCPRs could support the enzyme activities of CsC4H and CsF3'H. Correlation analysis indicated that the expression level of CsCPR1 (or CsCPR2 or CsCPR3) was positively correlated with 3',4',5'-catechin (or total catechins) content. Our results indicate that the CsCPRs are involved in the biosynthesis of catechins in tea leaves.
Collapse
Affiliation(s)
- Ronghao Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lipeng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuqiu He
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yihong Hou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jinfan Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yingying Li
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - He Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tian Tian
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
12
|
The important role of P450 monooxygenase for the biosynthesis of new benzophenones from Cytospora rhizophorae. Appl Microbiol Biotechnol 2021; 105:9219-9230. [PMID: 34807300 DOI: 10.1007/s00253-021-11648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
Benzophenones are polyketides with diverse biological activities. Novel cytotoxic benzophenones cytosporaphenones A-C and cytorhizins A-D, which contain a new skeleton, were previously extracted from endophytic fungus Cytospora rhizophorae A761. However, the mechanism for the biosynthesis of these compounds remains unknown. Cytosporaphenone A was assumed to be the precursor for the biosynthesis of cytorhizins A-D. In this study, we sequenced the genome of C. rhizophorae A761 and characterized a benzoate 4-monooxygenase cytochrome P450(BAM). CRISPR/Cas9-mediated gene knockout and overexpression studies in C. rhizophorae confirmed the vital function of BAM in the biosynthesis of cytosporaphenones and cytorhizins. Overexpression of BAM also enhanced the yield of cytosporaphenone A by 1.868 folds. The in vitro function and enzymatic properties of BAM were also described. This study demonstrates the important role of BAM for the biosynthesis of cytosporaphenone A and cytorhizins and is also the first to provide approaches for the CRISPR-Cas9-mediated gene deletion and gene overexpression studies in C. rhizophoarae, thus laying a foundation for the elucidation of the biosynthetic mechanism of cytorhizins and the discovery of new benzophenones mediated by BAM.Key points• The novel bam gene encoding BAM protein in C. rhizophorae was firstly deleted using CRIPSR/Cas9 system.• The in vitro oxidation function of novel BAM protein and enzymatic properties was characterized.• The over expression of bam gene enhanced the yield of cytosporaphone A in C. rhizophorae significantly.
Collapse
|
13
|
Zou X, Zhang Y, Zeng X, Liu T, Li G, Dai Y, Xie Y, Luo Z. Molecular Cloning and Identification of NADPH Cytochrome P450 Reductase from Panax ginseng. Molecules 2021; 26:molecules26216654. [PMID: 34771064 PMCID: PMC8588036 DOI: 10.3390/molecules26216654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Mey.) is a precious Chinese traditional medicine, for which ginsenosides are the most important medicinal ingredients. Cytochrome P450 enzymes (CYP450) and their primary redox molecular companion NADPH cytochrome P450 reductase (CPR) play a key role in ginsenoside biosynthesis pathway. However, systematic studies of CPR genes in ginseng have not been reported. Numerous studies on ginsenoside synthesis biology still use Arabidopsis CPR (AtCPR1) as a reductase. In this study, we isolated two CPR genes (PgCPR1, PgCPR2) from ginseng adventitious roots. Phylogenetic tree analysis showed that both PgCPR1 and PgCPR2 are grouped in classⅡ of dicotyledonous CPR. Enzyme experiments showed that recombinant proteins PgCPR1, PgCPR2 and AtCPR1 can reduce cytochrome c and ferricyanide with NADPH as the electron donor, and PgCPR1 had the highest enzymatic activities. Quantitative real-time PCR analysis showed that PgCPR1 and PgCPR2 transcripts were detected in all examined tissues of Panax ginseng and both showed higher expression in stem and main root. Expression levels of the PgCPR1 and PgCPR2s were both induced after a methyl jasmonate (MeJA) treatment and its pattern matched with ginsenoside accumulation. The present investigation suggested PgCPR1 and PgCPR2 are associated with the biosynthesis of ginsenoside. This report will assist in future CPR family studies and ultimately improving ginsenoside production through transgenic engineering and synthetic biology.
Collapse
|
14
|
Liao J, Xie L, Shi H, Cui S, Lan F, Luo Z, Ma X. Development of an efficient transient expression system for Siraitia grosvenorii fruit and functional characterization of two NADPH-cytochrome P450 reductases. PHYTOCHEMISTRY 2021; 189:112824. [PMID: 34102591 DOI: 10.1016/j.phytochem.2021.112824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Siraitia grosvenorii (Luo hanguo or monk fruit) is a valuable medicinal herb for which the market demand has increased dramatically worldwide. As promising natural sweeteners, mogrosides have received much attention from researchers because of their extremely high sweetness and lack of calories. Nevertheless, owing to the absence of genetic transformation methods, the molecular mechanisms underlying the regulation of mogroside biosynthesis have not yet been fully elucidated. Therefore, an effective method for gene function analysis needs to be developed for S. grosvenorii fruit. As a powerful approach, transient expression has become a versatile method to elucidate the biological functions of genes and proteins in various plant species. In this study, PBI121 with a β-glucuronidase (GUS) marker and tobacco rattle virus (TRV) were used as vectors for overexpression and silencing, respectively, of the SgCPR1 and SgCPR2 genes in S. grosvenorii fruit. The effectiveness of transient expression was validated by GUS staining in S. grosvenorii fruit, and the expression levels of SgCPR1 and SgCPR2 increased significantly after infiltration for 36 h. In addition, TRV-induced gene silencing suppressed the expression of SgCPR1 and SgCPR2 in S. grosvenorii fruit. More importantly, the production of the major secondary metabolites mogrol, mogroside IIE (MIIE) and mogroside III (MIII) was activated by the overexpression of SgCPR1 and SgCPR2 in S. grosvenorii fruit, with levels 1-2 times those in the control group. Moreover, the accumulation of mogrol, MIIE and MIII was decreased in the SgCPR1 and SgCPR2 gene silencing assays. Therefore, this transient expression approach was available for S. grosvenorii fruit, providing insight into the expression of the SgCPR1 and SgCPR2 genes involved in the mogroside biosynthesis pathway. Our study also suggests that this method has potential applications in the exploration of the molecular mechanisms, biochemical hypotheses and functional characteristics of S. grosvenorii genes.
Collapse
Affiliation(s)
- Jingjing Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Fusheng Lan
- Guilin GFS Monk Fruit Corp, Guilin, 541006, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
15
|
Zhu YM, Pan LC, Zhang LJ, Yin Y, Zhu ZY, Sun HQ, Liu CY. Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii. Int J Biol Macromol 2020; 165:1900-1910. [PMID: 33096178 DOI: 10.1016/j.ijbiomac.2020.10.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
A novel polysaccharide from Siraitia grosvenorii residues (SGP, molecular weight 1.93 × 103 KDa) was isolated and purified. SGP was composed of α-L-Arabinose, α-D-Mannose, α-d-Glucose, α-D-Galactose, Glucuronic acid, and Galacturonic acid with the ratio of 1: 1.92: 3.98: 7.63: 1.85: 7.34. The backbone of SGP was consist of galactoses and linked by α-(1,4)-glycosidic bond. The branch chains including α-1,6 linked glucose branch, α-1,6 linked mannose branch, α-1,3 linked galactose branch and arabinose branched (α-L-Ara(1→). The results of bioactivity experiments suggested that SGP had antioxidant in vitro, especially on scavenging DPPH radicals. Besides, SGP resulted in the decrease of ROS and the percentage of apoptotic and necrotic cells in a dose-dependent manner in H2O2 oxide injury PC12 cells. This research could help to develop the potential value and utilization of Siraitia grosvenorii.
Collapse
Affiliation(s)
- Yong-Ming Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Chao Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Juan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yue Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Hui-Qing Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chun-Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
16
|
Yamamura Y, Mabuchi A. Functional characterization of NADPH-cytochrome P450 reductase and cinnamic acid 4-hydroxylase encoding genes from Scoparia dulcis L. BOTANICAL STUDIES 2020; 61:6. [PMID: 32124148 PMCID: PMC7052086 DOI: 10.1186/s40529-020-00284-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Most plant cytochrome P450 (P450) proteins need to be supplied with electrons from a redox partner, e.g. an NADPH-cytochrome P450 reductase (CPR), for the activation of oxygen molecules via heme. CPR is a flavoprotein with an N-terminal transmembrane domain, which transfers electrons from NADPH to the P450 via coenzymes flavin adenine dinucleotide and flavin mononucleotide. RESULTS In this study, a novel CPR (SdCPR) was isolated from a tropical medicinal plant Scoparia dulcis L. The deduced amino acid of SdCPR showed high homology of > 76% with CPR from higher plants and belonged to the class II CPRs of dicots. Recombinant SdCPR protein reduced cytochrome c, ferricyanide (K3Fe(CN)6), and dichlorophenolindophenol in an NADPH-dependent manner. To elucidate the P450 monooxygenase activity of SdCPR, we isolated a cinnamic acid 4-hydroxylase (SdC4H, CYP73A111) gene from S. dulcis. Biochemical characterization of SdCPR/SdC4H demonstrated that SdCPR supports the oxidation step of SdC4H. Real-time qPCR results showed that expression levels of SdCPR and SdC4H were inducible by mechanical wounding treatment and phytohormone elicitation (methyl jasmonate, salicylic acid), which were consistent with the results of promotor analyses. CONCLUSIONS Our results showed that the SdCPR and SdC4H are related to defense reactions, including the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Yoshimi Yamamura
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Ayaka Mabuchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
17
|
Effects of Forchlorfenuron on the Morphology, Metabolite Accumulation, and Transcriptional Responses of Siraitia grosvenorii Fruit. Molecules 2019; 24:molecules24224076. [PMID: 31718007 PMCID: PMC6891407 DOI: 10.3390/molecules24224076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 11/17/2022] Open
Abstract
Siraitia grosvenorii fruit, called luo-han-guo (LHG), have been used as a traditional Chinese medicine (TCM) and dietary supplements for many years. Mogrosides, the main bioactive ingredients in LHG, are commercially available worldwide as a non-sugar-based and noncaloric sweetener. However, the production cannot meet the increasing market demand because of the low content of mogrosides and the small size of LHG. Therefore, some advanced technologies have been applied for improving the quality of LHG. Forchlorfenuron (CPPU), a plant growth regulator, is widely applied to promote plant yield and the secondary metabolite synthesis. Here, the content of nine mogrosides and three intermediates in LHG that were treated with three different concentrations of CPPU were determined by LC-MS/MS and GC-MS, respectively. The total content of mogrosides in LHG treated with CPPU was not enhanced, and the proportion of some main bioactive ingredients, including mogroside V (MV), were decreased relative to that of the control treatment. Morphological and cytological observations showed CPPU could make an early lignification in fruit epidermal cells, and 5 or 25 mg L-1 CPPU could inhibit LHG growth. The expression levels of 24 key genes in the mogroside biosynthesis pathway were measured and revealed that genes downregulated in upstream, and different expressions of SgUGTs would affect the accumulations and proportions of mogrosides in LHG induced by CPPU. This was the first study that applied CPPU individually on LHG, and assessed effects of CPPU on the morphology, the accumulation of metabolites, and expression profiles of 24 structural genes. The CPPU effects on LHG were undesirable, including development inhibition and the decrease of main mogroside content. These will provide guidance for the rational application of CPPU.
Collapse
|
18
|
Jin Z, Cong Y, Zhu S, Xing R, Zhang D, Yao X, Wan R, Wang Y, Yu F. Two classes of cytochrome P450 reductase genes and their divergent functions in Camptotheca acuminata Decne. Int J Biol Macromol 2019; 138:1098-1108. [DOI: 10.1016/j.ijbiomac.2019.07.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
|