1
|
Ma N, Li R, You S, Zhang DJ. Fermentation enrichment, structural characterization and immunostimulatory effects of β-glucan from Quinoa. Int J Biol Macromol 2024; 267:131162. [PMID: 38574931 DOI: 10.1016/j.ijbiomac.2024.131162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
We developed an efficient mixed-strain co-fermentation method to increase the yield of quinoa β-glucan (Q+). Using a 1:1 mass ratio of highly active dry yeast and Streptococcus thermophilus, solid-to-liquid ratio of 1:12 (g/mL), inoculum size of 3.8 % (mass fraction), fermentation at 32 °C for 27 h, we achieved the highest β-glucan yield of (11.13 ± 0.80)%, representing remarkable 100.18 % increase in yield compared to quinoa β-glucan(Q-) extracted using hot water. The structure of Q+ and Q- were confirmed through Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies. Q+ contained 41.66 % β-glucan, 3.93 % protein, 2.12 % uronic acid; Q- contained 37.21 % β-glucan, 11.49 % protein, and 1.73 % uronic acid. The average molecular weight of Q+(75.37 kDa) was lower than that of Q- (94.47 kDa). Both Q+ and Q- promote RAW264.7 cell proliferation without displaying toxicity. They stimulate RAW264.7 cells through the NF-κB and MAPK signaling pathways, primarily inducing NO and pro-inflammatory cytokines by upregulating CD40 expression. Notably, Q+ exhibited stronger immunostimulatory activity compared to Q-. In summary, the fermentation enrichment method yields higher content of quinoa β-glucan with increased purity and stronger immunostimulatory properties. Further study of its bioimmunological activity and structure-activity relationship may contribute to the development of new immunostimulants.
Collapse
Affiliation(s)
- Nan Ma
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Rong Li
- Natural product research center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea; East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea.
| | - Dong-Jie Zhang
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China.
| |
Collapse
|
2
|
Ma N, Palanisamy S, Yelithao K, Talapphet N, Zhang Y, Dae-Hee L, Shin IS, Lee DJ, You S. Structural properties and immune-enhancing activities of galactan isolated from red seaweed Grateloupia filicina. Chem Biol Drug Des 2023; 102:889-906. [PMID: 37571867 DOI: 10.1111/cbdd.14298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
A water-soluble polysaccharide (GFP) was isolated from Grateloupia filicina and fractionated using a DEAE Sepharose Fast Flow column to evaluate immunostimulatory activity. Carbohydrates (62.0%-68.4%) and sulfates (29.3%-34.3%) were the major components of GFP and its fractions (GFP-1 and GFP-2), with relatively lower levels of proteins (4.5%-15.4%) and uronic acid (1.4%-3.9%). The average molecular weight (Mw ) for GFP and its fractions was calculated between 98.2%-243.7 kDa. The polysaccharides were composed of galactose (62.1%-87.2%), glucose (4.5%-33.2%), xylose (3.1%-5.3%), mannose (1.4%-2.2%), rhamnose (1.2%-2.0%), and arabinose (0.9%-1.7%) units connected through →3)-Galp-(1→, →4)-Galp-(1→, →2)-Galp-(1→, →6)-Galp-(1→, →3,4)-Galp -(1→, →3,6)-Galp-(1→, →4,6)-Galp-(1→, →3,4,6)-Galp-(1→, →2,3)-Galp-(1→, →2,4)-Galp-(1→, →4)-Glcp-(1→, →6)-Glcp-(1→ and →4,6)-Glcp-(1→residues. The isolated polysaccharides effectively induced RAW264.7 murine macrophages by releasing nitric oxide (NO) and various cytokines via nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, the expression of toll-like receptor-2 (TLR-2) and TLR-4 in RAW264.7 cells indicated their activation through TLR-2 and TLR-4 binding receptors. Among the polysaccharides, GFP-1 highly stimulated the activation of RAW264.7 cells, which was mainly constituted of (→1) terminal-D-galactopyranosyl, (1→3)-linked-ᴅ-galactopyranosyl, (1→4)-linked-ᴅ-galactopyranosyl and (1→3,4) -linked-ᴅ-galactopyranosyl residues. These findings demonstrate that GFP-1 from G. filicina are effective at stimulating the immune system and this warrants further investigation to determine potential biomedical applications.
Collapse
Affiliation(s)
- Nan Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Khamphone Yelithao
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Department of Food Science and Technology, Souphanouvong University, Luang Prabang, Lao People's Democratic Republic
| | - Natchanok Talapphet
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yutong Zhang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Lee Dae-Hee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Il-Shik Shin
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Dong-Jin Lee
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
3
|
Huang Y, Ye Y, Xu D, Ji J, Sun J, Xu M, Xia B, Shen H, Xia R, Shi W, Sun X. Structural characterization and anti-inflammatory activity of a novel neutral polysaccharide isolated from Smilax glabra Roxb. Int J Biol Macromol 2023; 234:123559. [PMID: 36754268 DOI: 10.1016/j.ijbiomac.2023.123559] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Crude polysaccharides isolated from Smilax glabra were screened for anti-inflammatory activity using mice ear swelling animal experiments, during which the neutral polysaccharide S1 was identified. The structural characteristics and anti-inflammatory effects of the anti-inflammatory S1 polysaccharide were then investigated. The results showed that S1 was mainly composed of rhamnose, arabinose, galactose, glucose, xylose, and mannose. The structure of the main chain consisted of →6)-α-Galp-(1 → 6)-β-Galp-(1 → 4)-α-Xylp-(1 → 6)-β-Galp-(1→, with branched chains comprising α-Araf-(1 → 4)-α → Manp-(1 → and β-Rhap-(1 → 4)-α-Glcp-(1 → units. Furthermore, S1 did not have a triple helix conformation. S1 could inhibit NO secretion, reduce the levels of pro-inflammatory factors (IL-6 and TNF-α), and significantly reduce LPS-stimulated inflammatory damage in RAW 264.7 cells by inhibiting activation of the NF-κB (p65) pathway. These results shed light on the possibility of S1 to be developed as a novel anti-inflammatory drug for therapeutic purposes.
Collapse
Affiliation(s)
- Yaoguang Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Deping Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengqi Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bangen Xia
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, China
| | - Hongfang Shen
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, China
| | - Ruowei Xia
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, China
| | - Wenqin Shi
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Choi NR, Lee K, Seo M, Ko SJ, Choi WG, Kim SC, Kim J, Park JW, Kim BJ. Network Pharmacological Analysis and Experimental Validation of the Effect of Smilacis Glabrae Rhixoma on Gastrointestinal Motility Disorder. PLANTS (BASEL, SWITZERLAND) 2023; 12:1509. [PMID: 37050134 PMCID: PMC10096900 DOI: 10.3390/plants12071509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal motility disorder (GMD) is a disease that causes digestive problems due to inhibition of the movement of the gastrointestinal tract and is one of the diseases that reduce the quality of life of modern people. Smilacis Glabrae Rhixoma (SGR) is a traditional herbal medicine for many diseases and is sometimes prescribed to improve digestion. As a network pharmacological approach, we searched the TCMSP database for SGR, reviewed its constituents and target genes, and analyzed its relevance to gastrointestinal motility disorder. The effects of the SGR extract on the pacemaker activity in interstitial cells of Cajal (ICC) and gastric emptying were investigated. In addition, using the GMD mouse model through acetic acid (AA), we investigated the locomotor effect of SGR on the intestinal transit rate (ITR). As a result of network pharmacology analysis, 56 compounds out of 74 candidate compounds of SGR have targets, the number of targets is 390 targets, and there are 904 combinations. Seventeen compounds of SGR were related to GMD, and as a result of comparing the related genes with the GMD-related genes, 17 genes (active only) corresponded to both. When looking at the relationship network between GMD and SGR, it was confirmed that quercetin, resveratrol, SCN5A, TNF, and FOS were most closely related to GMD. In addition, the SGR extract regulated the pacemaker activity in ICC and recovered the delayed gastric emptying. As a result of feeding the SGR extract to AA-induced GMD mice, it was confirmed that the ITR decreased by AA was restored by the SGR extract. Through network pharmacology, it was confirmed that quercetin, resveratrol, SCN5A, TNF, and FOS were related to GMD in SGR, and these were closely related to intestinal motility. Based on these results, it is suggested that SGR in GMD restores digestion through the recovery of intestinal motility.
Collapse
Affiliation(s)
- Na-Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Kangwook Lee
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
| | - Mujin Seo
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Seok-Jae Ko
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Gyun Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Sang-Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| | - Jinsung Kim
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byung-Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| |
Collapse
|
5
|
Sheng S, Fu Y, Pan N, Zhang H, Xiu L, Liang Y, Liu Y, Liu B, Ma C, Du R, Wang X. Novel exopolysaccharide derived from probiotic Lactobacillus pantheris TCP102 strain with immune-enhancing and anticancer activities. Front Microbiol 2022; 13:1015270. [PMID: 36225355 PMCID: PMC9549278 DOI: 10.3389/fmicb.2022.1015270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Probiotics are gaining attention due to their functions of regulating the intestinal barrier and promoting human health. The production of exopolysaccharide (EPS) is one of the important factors for probiotics to exert beneficial properties. This study aimed to screen exopolysaccharides-producing lactic acid bacteria (LAB) and evaluate the probiotic potential. we obtained three exopolysaccharide fractions (EPS1, EPS2, and EPS3) from Lactobacillus pantheris TCP102 and purified by a combination of ion-exchange chromatography and gel permeation chromatography. The structures of the fractions were characterized by FT-IR, UV, HPLC, and scanning electron microscopy (SEM) analysis. The Mw of EPS1, EPS2, and EPS3 were approximately 20.3, 23.0, and 19.3 kDa, and were mainly composed of galactose, glucose, and mannose, with approximate molar ratios of 2.86:1:1.48, 1.26:1:1, 1.58:1.80:1, respectively. Furthermore, SEM analysis demonstrated that the three polysaccharide fractions differ in microstructure and surface morphology. Additionally, preliminary results for immune-enhancing and anticancer activities reveal that these EPSs significantly induced the production of nitric oxide (NO), TNF-α, and IL-6 in Ana-1 cells and peritoneal macrophage cells. Meanwhile, the EPSs also significantly suppressed the proliferation of HCT-116, BCG-803, and particularly A-2780 cells. The results suggest that the three novel EPSs isolated from Lactobacillus pantheris TCP102 can be regarded as potential application value in functional food and natural antitumor drugs.
Collapse
Affiliation(s)
- Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yubing Fu
- School of Life Sciences, Faculty of Medicine and Life Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lei Xiu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Cheng Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ruiping Du
- Animal Nutrition Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Hua Y, Zhang H, Fu Q, Feng Y, Duan Y, Ma H. Effects of Ultrasound Modification with Different Frequency Modes on the Structure, Chain Conformation, and Immune Activity of Polysaccharides from Lentinus edodes. Foods 2022; 11:foods11162470. [PMID: 36010471 PMCID: PMC9407330 DOI: 10.3390/foods11162470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Highlights Abstract The aim of this study was to investigate the effects of ultrasound with different frequency modes on the chemical structure, chain conformation, and immune activity of lentinan from Lentinus edodes; the structure–activity relationship of lentinan was also discussed. The results showed that, compared with original lentinan (extracted using hot water), although ultrasonic treatment did not change the monosaccharide composition and main functional groups of lentinan, it significantly changed its chain conformation. Especially at 60, 40/60, and 20/40/60 kHz, according to atomic force microscopy and solution chain conformation parameters, lentinan transformed from a rigid triple-helix chain to a flexible single-helix chain, and the side-chain was severely broken. Under this condition, lentinan had the worst immune activity. However, at 20/40 and 20/60 kHz, the rigid triple-helix chain transformed into a loose and flexible triple-helix chain, showing the strongest immune activity. These results indicated that dual-frequency ultrasound had significant effects on the conformation of lentinan, and the conformation characteristics of polysaccharide chain such as spiral number, stiffness and flexibility, and side-chain played an important role in immune activity. This study shows the great potential of ultrasound with different frequency modes in carbohydrate food processing, which may have important reference value and practical significance.
Collapse
Affiliation(s)
- Yu Hua
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| | - Qian Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Qiao J, Lu G, Wu G, Liu H, Wang W, Zhang T, Xie G, Qin M. Influence of different pretreatments and drying methods on the chemical compositions and bioactivities of Smilacis Glabrae Rhizoma. Chin Med 2022; 17:54. [PMID: 35524264 PMCID: PMC9074193 DOI: 10.1186/s13020-022-00614-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background The processing of medicinal plant materials is one of the important factors influencing the components and biological activities of TCMs. Smilax glabra Roxb. is an herbal vine widely distributed in China, and its dried rhizome (Smilacis Glabrae Rhizoma, SGR) is often used in traditional medicines and functional foods. The processing methods of fresh cutting for SGR slices have been included in ancient Chinese herbal works, some local standards of TCMs, and the current Chinese Pharmacopoeia. Nevertheless, to date, the scientific basis for the processing of fresh medicinal materials for SGR slices has not been revealed. Methods To optimize the processing method for preparing SGR slices from the fresh rhizomes, the chemical compositions of the un-pretreated and pretreated (boiling, steaming) samples before and after drying (sun-drying, shade-drying, oven-drying), and the contents of astilbin isomers in dried SGR were analyzed by UHPLC-Q-TOF-MS/MS and UHPLC-DAD methods, respectively. Then, the antioxidant, anti-inflammatory, xanthine oxidase and α-glucosidase inhibitory activities of the prepared SGR slices were investigated by biological assays. Results A total of fifty-two compounds were identified from the un-pretreated and pretreated samples and a total of forty-nine compounds were identified from the subsequently dried samples. After pretreated by boiling and steaming, the contents of neoastilbin, neoisoastilbin, and isoastilbin in the prepared samples all increased. As a quality marker of SGR, the content of astilbin was unchanged or decreased slightly compared with that in the un-pretreated samples. During the drying process, the contents of the four astilbin stereoisomers in the un-pretreated samples increased significantly, while those in the pretreated samples had a slight increase or decrease. The effects of different processing methods were sorted according to the bioactivities of the prepared SGR. As a result, SGR slices prepared with no pretreatment followed by a sun-drying process have a higher astilbin content, better bioactivities and more energy savings, representing the optimum processing method for SGR slices. Conclusions This study reveals the scientific basis for the processing of fresh medicinal materials for SGR slices. The results provide scientific information for the quality control of SGR and its rational applications in herbal medicines and functional foods. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00614-7.
Collapse
Affiliation(s)
- Juanjuan Qiao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gengyu Lu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gang Wu
- The Teaching Experiments Center of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Liu
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000, China
| | - Wanli Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianmao Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Liu Y, Mao K, Zhang N, Chitrakar B, Huang P, Wang X, Yang B, Sang Y. Structural characterization and immunomodulatory effects of extracellular polysaccharide from Lactobacillus paracasei VL8 obtained by gradient ethanol precipitation. J Food Sci 2022; 87:2034-2047. [PMID: 35415843 DOI: 10.1111/1750-3841.16153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
In this study, gradient ethanol precipitation method was applied to obtain the extracellular polysaccharides of Lactobacillus paracasei VL8 (VL8-EPS). The yields, physicochemical properties, and immunomodulatory effects of VL8-EPS obtained by precipitation at different ethanol concentrations (30%, 50%, and 70%, v/v) were compared. The results showed that VL8-EPSs were high molecular weight sulfated heteropolysaccharides, composed mainly of glucose and galactose, and the alteration of ethanol concentration had an effect on their chemical compositions, molecular weight distributions, monosaccharide composition, and surface structure, while the primary structure remained the same. Among the three polysaccharide fractions, VL8-EPS50 displayed better immunomodulatory activities compared with VL8-EPS30 and VL8-EPS70. VL8-EPS50 was found to exert immunomodulatory effects by enhancing the phagocytic activity of RAW264.7 cells and to promote their secretion of more nitric oxide; it also showed stronger thermal and solution stability. In summary, there was a correlation between the structural characteristics of polysaccharides and their immunomodulatory activity, and VL8-EPS50 was preferentially used for in vivo immunomodulatory activity. Practical Application This study opens up the source of raw materials for functional foods, which can provide some theoretical basis for the research and development of extracellular polysaccharides of lactic acid bacteria and promote their application in the future development of food industry.
Collapse
Affiliation(s)
- Yuwei Liu
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Nan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Pimiao Huang
- College of Food Science, Southwest University, Chongqing, PR China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| |
Collapse
|
9
|
Talapphet N, Palanisamy S, Li C, Ma N, Prabhu NM, You S. Polysaccharide extracted from Taraxacum platycarpum root exerts immunomodulatory activity via MAPK and NF-κB pathways in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114519. [PMID: 34390795 DOI: 10.1016/j.jep.2021.114519] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum platycarpum Dahlst. (Korean dandelion) is a medicinal herb used in traditional medicine in Korea to treat various disease such as furuncles, mammitis, hepatitis, jaundice. Moreover, a decoction prepared from T. platycarpum leaves and stems is an effective treatment for cancer, glycosuria, liver disease, pleurodynia, and stomach problems. AIM OF THE STUDY The main objective of this work was to study the composition and structural properties of polysaccharides (TPP) from Taraxacum platycarpum Dahlst. root and investigate the immunostimulatory activity on RAW264.7 cells. MATERIALS AND METHODS TPP was extracted from T. platycarpum using hot water extraction, ethanol precipitation method and its fractionated using DEAE-Sepharose fast flow column. The composition, molecular weight, and structural characterization of TPP and its fractions were evaluated by various techniques. Further, the immunostimulatory activity of polysaccharides was tested on murine macrophage cell line RAW264.7 by various in vitro assays. The structure effect of TPP on RAW264.7 cells was studied by the removal of sulfate (desulfation) and protein (deproteinization) contents from TPP. RESULTS We obtained three fractions namely TPP-1, TPP-2, and TPP-3 which mainly consisted of carbohydrates (75.55, 52.71, and 48.41%), sulfate (8.42, 15.19, and 27.67%), uronic acid (1.27, 6.56, and 4.39%), and protein (8.15, 24.85, and 9.73%). The average molecular weight of the fractions was 56.7, 108.2, and 132.3 × 103 g/mol, respectively. The polysaccharides activate the RAW264.7 cell to produce a significant amount of NO and upregulate the various mRNA expression by the activation of MAPK and NF-κB pathways via TLR4, TLR2, and CR3 receptors. The structurally modified deproteinated derivative (DP-TPP-2) more effectively decreases the NO production which means the protein content of TPP-2 mainly contributes to the RAW264.7 cells activation. The structure of DP-TPP-2 primarily consists of 1 → 2)-Galp, 1 → 6)-Glup, 1 → 2) - Rhap, and 1 → 5) - Arap glycosidic linkages. CONCLUSIONS The present study demonstrated that the polysaccharide isolated from T. platycarpum shows admirable immunostimulatory by the activation of MAPK and NF-κB pathways through TLR4, TLR2, and CR3 receptors. The protein content of polysaccharides mainly contributes to the RAW264.7 cells activation. Our study results could be useful for developing a new immunostimulant agent.
Collapse
Affiliation(s)
- Natchanok Talapphet
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - ChangSheng Li
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Nan Ma
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea.
| |
Collapse
|
10
|
Recent Advances in the Production of Exopolysaccharide (EPS) from Lactobacillus spp. and Its Application in the Food Industry: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132212429] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exopolysaccharide (EPS) show remarkable properties in various food applications. In this review paper, EPS composition, structural characterization, biosynthesis pathways, and recent advancements in the context of application of EPS-producing Lactobacillus spp. in different food industries are discussed. Various chemical and physical properties of Lactobacillus EPS, such as the structural, rheological, and shelf-life enhancement of different food products, are mentioned. Moreover, EPSs play a characteristic role in starter culture techniques, yogurt production, immunomodulation, and potential prebiotics. It has been seen that the wastes of fermented and non-fermented products are used as biological food for EPS extraction. The main capabilities of probiotics are the use of EPS for technological properties such as texture and flavor enhancement, juiciness, and water holding capacities of specific food products. For these reasons, EPSs are used in functional and fermented food products to enhance the healthy activity of the human digestive system as well as for the benefit of the food industry to lower product damage and increase consumer demand. Additionally, some pseudocereals such as amaranth and quinoa that produce EPS also play an important role in improving the organoleptic properties of food-grade products. In conclusion, more attention should be given to sustainable extraction techniques of LAB EPS to enhance structural and functional use in the developmental process of food products to meet consumer preferences.
Collapse
|
11
|
Surayot U, Wangtueai S, You S, Palanisamy S, Krusong W, Brennan CS, Barba FJ, Phimolsiripol Y, Seesuriyachan P. Extraction, Structural Characterisation, and Immunomodulatory Properties of Edible Amanitahemibapha subspecies javanica (Corner and Bas) Mucilage Polysaccharide as a Potential of Functional Food. J Fungi (Basel) 2021; 7:683. [PMID: 34575721 PMCID: PMC8468940 DOI: 10.3390/jof7090683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
This research aimed to extract mucilage polysaccharides (MP) from Amanita hemibapha subspecies javanica (Corner and Bas), and further fractionate them using anion-exchange chromatography, yielding two fractions (MPF1 and MPF2). The crude extract, and fractions mainly consisted of carbohydrates (83.5-93.2%) with minor amounts of proteins (5.40-7.20%), and sulphates (1.40-9.30%). Determination of the monosaccharide composition revealed that glucose was the major unit, followed by galactose, mannose, rhamnose, and arabinose. The average molecular weight (MW) of the crude extract and fractions was in the range 104.0-479.4 × 103 g/mol. Interestingly, the crude extract, and fractions did not cause any toxic effect in RAW264.7 cells. However, they stimulated the RAW264.7 cells to release nitric oxide and cytokines through the activation of nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways via cell surface TLR4. Structural analysis of the most immunestimulating extract fraction, MPF2, revealed that the main backbone consisted of α-D-(1→6)-glucopyranoside. These results suggest that the MPs derived from A. hemibapha subspecies javanica (Corner and Bas) are potent in enhancing immunity; hence, they can be used as a functional ingredient in food products.
Collapse
Affiliation(s)
- Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (U.S.); (S.W.)
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (U.S.); (S.W.)
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea; (S.Y.); (S.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon 210-720, Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea; (S.Y.); (S.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon 210-720, Korea
| | - Warawut Krusong
- Division of Fermentation Technology, Faculty of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Charles S. Brennan
- School of Science, STEM College, RMIT University, Melbourne 3000, Australia;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Advanced Manufacturing and Management Technology Research Center (AM2Tech), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb. Molecules 2020; 25:molecules25225295. [PMID: 33202848 PMCID: PMC7697956 DOI: 10.3390/molecules25225295] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed to isolate, prepare and identify the main flavonoids from a standardized Smilax glabra flavonoids extract (SGF) using preparative HPLC, MS, 1H NMR and 13C NMR, determine the contents of these flavonoids using UPLC, then compare their pharmacological activities in vitro. We obtained six flavonoids from SGF: astilbin (18.10%), neoastilbin (11.04%), isoastilbin (5.03%), neoisoastilbin (4.09%), engeletin (2.58%) and (−)-epicatechin (1.77%). The antioxidant activity of six flavonoids were evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS+) radical scavenging activity and ferric reducing antioxidant power (FRAP). In addition, the anti-inflammatory activity of six flavonoids were evaluated by determining the production of cytokines (IL-1β, IL-6), nitric oxide (NO) using enzyme linked immunosorbent assay and the NF-κB p65 expression using Western blotting in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results showed that (−)-epicatechin, astilbin, neoastilbin, isoastilbin and neoisoastilbin had strong antioxidant activities, not only in DPPH and ABTS+ radicals scavenging capacities, but in FRAP system. Furthermore, all the six flavonoids could significantly inhibit the secretion of IL-1β, IL-6, NO (p < 0.01) and the protein expression of NF-κB p-p65 (p < 0.01) in LPS-stimulated RAW264.7 cells. This study preliminarily verified the antioxidant and anti-inflammatory activities of six flavonoids in S. glabra.
Collapse
|
13
|
The relationship between structural properties and activation of RAW264.7 and natural killer (NK) cells by sulfated polysaccharides extracted from Astragalus membranaceus roots. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Lin Z, Tan X, Zhang Y, Li F, Luo P, Liu H. Molecular Targets and Related Biologic Activities of Fucoidan: A Review. Mar Drugs 2020; 18:E376. [PMID: 32707775 PMCID: PMC7459501 DOI: 10.3390/md18080376] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fucoidan-a marine natural active polysaccharide derived from brown algae with a variety of medicinal activities and low toxicity-has been used as clinical drug for renal diseases for nearly 20 years. The pharmacological mechanism of fucoidan has been well-investigated, based on target molecules and downstream signaling pathways. This review summarizes some important molecular targets of fucoidan and its related biologic activities, including scavenger receptor (SR), Toll-like receptors (TLRs), C-type lectin (CLEC) and some newly found target molecules, which may be beneficial for further understanding the pharmacological mechanism of fucoidan and discovering its new functions, as well as developing related clinical or adjuvant drugs and functional preparations.
Collapse
Affiliation(s)
| | | | | | | | | | - Huazhong Liu
- Faculty of Chemistry & Environment Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (X.T.); (Y.Z.); (F.L.); (P.L.)
| |
Collapse
|
15
|
You X, Yang L, Zhao X, Ma K, Chen X, Zhang C, Wang G, Dong M, Rui X, Zhang Q, Li W. Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from Tibetan kefir. Int J Biol Macromol 2020; 158:408-419. [PMID: 32389648 DOI: 10.1016/j.ijbiomac.2020.05.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
In this study, three strains of lactic acid bacteria isolated from Tibetan kefir grains, including two strains of Lactobacillus pentosus LZ-R-17 and L. helveticus LZ-R-5, and one strain of Lactococcus lactis subsp. lactis LZ-R-12. The ability of three strains to produce exopolysaccharide (EPS) was tested, and L. pentosus LZ-R-17 was found to have the highest EPS yield. One EPS (R-17-EPS) was isolated from the fermented milk by L. pentosus LZ-R-17 and purified by DEAE-52 anion exchange chromatography. Furthermore, R-17-EPS preliminary structure and macrophage immunomodulatory activity in vitro were investigated. On the basis of the analytical results of ultraviolet-visible spectrum, Fourier transform-infrared spectrum, monosaccharide composition analysis and one-dimensional and two-dimensional nuclear magnetic resonance (NMR) spectra, R-17-EPS was found to have an average molecular weight of 1.20 × 106 Da and was composed of galactose and glucose residues with a molar ratio of 1.00:3.15. NMR analysis revealed that the R-17-EPS was a linear hetero-galactoglucan containing repeating units of →2)-α-D-Galp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1→. In addition, R-17-EPS could effectively enhanced the proliferation, phagocytosis, nitric oxide and cytokines production of RAW264.7 cells, suggesting that R-17-EPS had potent immunostimulatory activity and could be explored as immunomodulator in functional food and/or medicine fields.
Collapse
Affiliation(s)
- Xiu You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lin Yang
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, PR China
| | - Xiaojuan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kai Ma
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changliang Zhang
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Guangxian Wang
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qiuqin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
16
|
Preparation, characterization and bioactivity of polysaccharide fractions from Sagittaria sagittifolia L. Carbohydr Polym 2020; 229:115355. [DOI: 10.1016/j.carbpol.2019.115355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/31/2023]
|
17
|
Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata Michx fruit. Int J Biol Macromol 2020; 145:1080-1090. [DOI: 10.1016/j.ijbiomac.2019.09.201] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 11/23/2022]
|
18
|
Yang D, Lin F, Huang Y, Ye J, Xiao M. Separation, purification, structural analysis and immune-enhancing activity of sulfated polysaccharide isolated from sea cucumber viscera. Int J Biol Macromol 2019; 155:1003-1018. [PMID: 31712137 DOI: 10.1016/j.ijbiomac.2019.11.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
A novel sulfated polysaccharide (SCVP-1) was isolated from sea cucumber viscera and purified to elucidate its structure and immune-enhancing ability. SCVP-1 was found to be a homogeneous polysaccharide with a relative molecular weight of 180.8 kDa and composed of total sugars (60.2 ± 2.6%), uronic acid (15.3 ± 1.8%), proteins (6.8 ± 0.8%), and sulfate groups (18.1 ± 0.9%). SCVP-1 consisted of mannose, glucosamine, glucuronic acid, N-acetyl-galactosamine, glucose, galactose and fucose at an approximate molar ratio of 1.00:1.41:0.88:2.14:1.90:1.12:1.24. The fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR) analyses showed that SCVP-1 was a kind of glycosaminoglycan. And the sulfation patterns of the fucose branches were Fuc2,4S, Fuc3,4S and Fuc0S. The surface morphology of SCVP-1 presented loose and irregular sheet structure formed by aggregation of polysaccharide molecules with spherical structure. Moreover, SCVP-1 promoted the production of nitric oxide (NO) and cytokines (IL-1β, IL-6 and TNF-α) by RAW264.7 cells as well as the expression of related genes (iNOS, IL-1β, IL-6 and TNF-α) and also enhanced their phagocytic activity through TLR4-mediated activation of the MAPKs and NF-κB signaling pathways. This study suggests that sea cucumber viscera are good sources of polysaccharides and SCVP-1 might be a novel immunomodulator.
Collapse
Affiliation(s)
- Dongda Yang
- College of Chemical Engineering, Huaqiao university of China, Xiamen 361021, China
| | - Fudi Lin
- College of Chemical Engineering, Huaqiao university of China, Xiamen 361021, China
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao university of China, Xiamen 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao university of China, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, Fujian, China.
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao university of China, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, Fujian, China.
| |
Collapse
|