1
|
Wang P, Shao W, Wang Y, Wang B, Lv X, Feng Y. Angiogenesis of Avascular Necrosis of the Femoral Head: A Classic Treatment Strategy. Biomedicines 2024; 12:2577. [PMID: 39595143 PMCID: PMC11591661 DOI: 10.3390/biomedicines12112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Avascular necrosis of the femoral head (ANFH) is a type of osteonecrosis due to the cessation of blood supply, characterized by persistent local pain and collapse of the joint. The etiology of ANFH is multifaceted, and while its precise pathogenesis remains elusive, it is currently widely believed that the femoral head is highly dependent on the vascular system. A large number of studies have shown that vascular injury is the initial factor in the onset of ANFH. In this review, we briefly introduced the process of angiogenesis and the blood supply to the femoral head, with a focus on summarizing the existing research on promoting angiogenesis for the treatment of ANFH. We conclude that providing alternative pathways through angiogenesis to resolve the problem of the obstructed free flow of the blood is an important means of treating ANFH. Moreover, we also looked forward to the mechanism of endothelial metabolism, which has not yet been studied in femoral head necrosis models, providing potential strategies for more effective use of angiogenesis for the treatment of femoral head necrosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Yuxi Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (P.W.); (W.S.); (Y.W.); (X.L.)
| |
Collapse
|
2
|
Zhang Y, Zeng H, Zhou L, Wang C, Yang X, Liu S. Integrated histopathology and transcriptome metabolome profiling reveal the toxicity mechanism of phenazine-1-carboxylic acid in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123402. [PMID: 38272164 DOI: 10.1016/j.envpol.2024.123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Phenazine-1-carboxylic acid (PCA) is a new type of agrochemical used to prevent plant diseases, but its effects on aquatic organisms are unclear. To comprehensively assess the impacts of PCA for aquatic organisms and its associated environmental risks, this study investigated, taking zebrafish as the research object, the toxicological mechanism of PCA by means of optical microscopy, hematoxylin and eosin (HE) staining, ultrastructural observation, physiological and biochemical testing, transcriptome sequencing, metabolome analysis, fluorescence quantitative PCR and molecular simulation. The results indicated that PCA was detrimental to zebrafish embryos, larvae and adults, with LC50 values at 96 h of 3.9093 mg/L, 8.5075 mg/L, and 13.6388 mg/L, respectively. PCA caused abnormal spontaneous movement, slowed the heart rate, delayed hatching, shortened the body length, slowed growth, and caused malformations. PCA mainly affected the brain, liver, heart, and ovaries. PCA distorted cell morphology, damaged mitochondrial membranes, disintegrated mitochondrial ridges, and dissociated nuclear membranes. PCA inhibited the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), decreased the malondialdehyde (MDA) content and disrupted antioxidant effects. The results of omics studies confirmed that PCA interfered with the transcriptional and metabolic network of zebrafish, downregulating most genes and metabolites. PCA mainly affected functions related to mitochondrial steroids, lipids, sterols, oxidoreductase activity and pathways involving cofactors, steroids, porphyrin, cytochromes, which specifically bound to targets such as panx3, agmat, and ace2. PCA was moderately toxic to zebrafish, and its usage should be strictly controlled to reduce toxic effects on aquatic organisms. The results of this study provide a new insights for ecotoxicology research.
Collapse
Affiliation(s)
- Ya Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Leyin Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Zhang S, Sadhasivam DR, Soundarajan S, Shanmugavel P, Raji A, Xu M. In vitro and in vivo investigation of chrysin chelated copper complex as biocompatible materials for bone tissue engineering applications. 3 Biotech 2023; 13:45. [PMID: 36643401 PMCID: PMC9837365 DOI: 10.1007/s13205-022-03449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Flavonoid metal complexes have interesting properties and are widely explored for bone regeneration owing to their potent biological activity. In the present study, we investigated the biocompatibility and osteogenic properties of the Copper(II)-chrysin complex (C/Cu). The biocompatibility of C/Cu was assessed in vitro with human osteoblastic cells and in vivo using chick embryo and zebrafish models. The C/Cu complex was found to be cytofriendly with good biocompatibility. The osteogenic property of C/Cu was studied at cellular and molecular levels. C/Cu promoted mineralization in osteoblastic cultures by increasing ALP activity. At the molecular level, C/Cu significantly promoted the mRNA levels of osteoblast differentiation marker genes such as runt-related transcription factor 2 (Runx2), Type 1 collagen and ALP. In addition to this, secretory proteins, osteonectin (ON) and osteocalcin (OC) levels were also stimulated. We have also identified that C/Cu exhibited enhanced osteogenic properties and antibacterial activity compared with Chrysin. Thus, C/Cu can be used as an osteogenic agent in bone tissue engineering.
Collapse
Affiliation(s)
- Shikai Zhang
- The third department of Orthopedic, Shanghai Kaiyuan Orthopedic Hospital, Shanghai, 200129 China
| | - Deepa Rani Sadhasivam
- PG & Research Department of Zoology, Ethiraj College for Women, Chennai, Tamil Nadu India
| | - Sangeetha Soundarajan
- PG & Research Department of Zoology, Pachaiyappa’s College for Women, Chennai, Tamil Nadu India
| | | | - Amutha Raji
- Department of Biotechnology, Periyar university, Salem, Tamil Nadu India
| | - Min Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433 China
| |
Collapse
|
4
|
Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol 2022; 221:1428-1438. [PMID: 36122781 DOI: 10.1016/j.ijbiomac.2022.09.129] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Angiogenesis forms new vessels from existing ones. Abnormal angiogenesis, which is what gives tumor microenvironments their distinctive features, is characterised by convoluted, permeable blood vessels with a variety of shapes and high perfusion efficiency. Tumor angiogenesis controls cancer growth by allowing invasion and metastasis and is highly controlled by signalling networks. Therapeutic techniques targeting VEGF, PDGF, FGF Notch, Angiopoietin, and HGF signalling restrict the tumor's vascular supply. Numerous pathways regulate angiogenesis, and when one of those processes is blocked, the other pathways may step in to help. VEGF signalling inhibition alone has limits as an antiangiogenic therapy, and additional angiogenic pathways such as FGF, PDGF, Notch, angiopoietin, and HGF are important. For the treatment of advanced solid tumors, there are also new, emerging medicines that target multiple angiogenic pathways. Recent therapies block numerous signalling channels concurrently. This study focuses on 'alternative' methods to standard antiangiogenic medicines, such as cyclooxygenase-2 blocking, oligonucleotide binding complementary sites to noncoding RNAs to regulate mRNA target, matrix metalloproteinase inhibition and CRISPR/Cas9 based gene edition and dissecting alternative angiogenesis mechanism in tumor microenvironment.
Collapse
|
5
|
Elumalai M, Vimalraj S, Chandirasekar S, Ezhumalai N, Kasthuri J, Rajendiran N. N-Cholyl d-Penicilamine Micelles Templated Red Light-Emitting Silver Nanoclusters: Fluorometric Sensor for S 2- Ions and Bioimaging Application Using Zebrafish Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7580-7592. [PMID: 35674287 DOI: 10.1021/acs.langmuir.2c00713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Red-light-emitting silver nanoclusters (AgNCs) are recently emerged as a promising nanoprobe in the field of biomedical applications, because of their attractive properties, including brightness, luminescence stability, and better biocompatibility. In this report, we have developed highly water-soluble red-light-emitting AgNCs by using N-cholyl d-penicilamine (NCPA) as a biosurfactant at above the critical micelle concentration (CMC) at room temperature. Moreover, the NCPA was initially synthesized by demonstrating the reaction between cholic acid and d-penicilamine via a simple coupling reaction strategy. The primary and secondary critical micellar concentration (CMC) of NCPA surfactant was measured using pyrene (1 × 10-6 M) as a fluorescent probe, and the values were found to be 3.18 and 10.6 mM, respectively. Steady-state fluorescence measurements reveal that the prepared AgNCs shows the excitation and emission maxima at 365 and 672 nm, respectively, with a large Stokes shift (307 nm). The average lifetime measurements and quantum yield of the AgNCs were calculated to be 143.43 ns and 16.34%, respectively. Also, the red luminescent NCPA-templated AgNCs was synthesized in various protic and aprotic polar solvents, among which DMF and DMSO exhibit bright emission at longer wavelength as synthesized in aqueous medium. At higher concentration of AgNO3, bright luminescent and highly stable solid AgNCs was obtained with excitation and emission maxima at 607 and 711 nm, respectively. Furthermore, the synthesized AgNCs has been successfully utilized as a fluorescent probe for selective and sensitive detection of S2- ions at nanomolar level in water samples, showing its potential applicability for the detection of S2- ions in drinking, river, and tap water samples. Finally, toxicity and bioimaging studies of NCPA-templated AgNCs was demonstrated using zebrafish as in vivo model, showing no significant toxicity up to 200 μL/mL. The AgNCs-stained embryos exhibited red fluorescence with high intensity, which shows that AgNCs are stable in a living system.
Collapse
Affiliation(s)
- Manikandan Elumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Guindy, Chennai 600025, Tamil Nadu, India
| | | | - Nishanthi Ezhumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Jayapalan Kasthuri
- Department of Chemistry, Quaid-E- Millath Government College for Women, Chennai 600002, Tamil Nadu, India
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
6
|
Hariprabu KNG, Sathya M, Vimalraj S. CRISPR/Cas9 in cancer therapy: A review with a special focus on tumor angiogenesis. Int J Biol Macromol 2021; 192:913-930. [PMID: 34655593 DOI: 10.1016/j.ijbiomac.2021.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Tumor angiogenesis is a critical target for cancer treatment and its inhibition has become a common anticancer approach following chemotherapy. However, due to the simultaneous activation of different compensatory molecular mechanisms that enhance tumor angiogenesis, clinically authorized anti-angiogenic medicines are ineffective. Additionally, medications used to treat cancer have an effect on normal body cells; nonetheless, more research is needed to create new cancer therapeutic techniques. With advances in molecular biology, it is now possible to use gene-editing technology to alter the genome and study the functional changes resulting from genetic manipulation. With the development of CRISPR/Cas9 technology, it has become a very powerful tool for altering the genomes of many organisms. It was determined that CRISPR/Cas9, which first appeared in bacteria as a part of an adaptive immune system, could be used, in modified forms, to alter genomes and function. In conclusion, CRISPR/Cas9 could be a major step forward to cancer management by providing patients with an effective method for dealing with cancers by dissecting the carcinogenesis pathways, identifying new biologic targets, and perhaps arming cancer cells with drugs. Hence, this review will discuss the current applications of CRISPR/Cas9 technology in tumor angiogenesis research for the purpose of cancer treatment.
Collapse
Affiliation(s)
| | - Muthusamy Sathya
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
7
|
Selvaraj V, Subramanian R, Sekaran S, Veeraiyan DN, Thangavelu L. Ferulic acid-Cu(II) and Zn(II) complexes promote bone formation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Vimalraj S, Subramanian R, Saravanan S, Arumugam B, Anuradha D. MicroRNA-432-5p regulates sprouting and intussusceptive angiogenesis in osteosarcoma microenvironment by targeting PDGFB. J Transl Med 2021; 101:1011-1025. [PMID: 33846539 DOI: 10.1038/s41374-021-00589-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is a type of bone tumor conferred with high metastatic potential. Attainable growth of tumors necessitates functional vasculature mediated by sprouting angiogenesis (SA) and intussusceptive angiogenesis (IA). However, the regulation of IA and SA is still unclear in OS. To understand the mechanisms adopted by OS to induce angiogenesis, initially, we assessed the expression profile of a set of miRNAs' in both OS cells (SaOS2 and MG63) and normal bone cells. Amongst them, miR-432-5p was found to be highly downregulated in OS. The functional role of miR-432-5p in OS was further analyzed using miR-432-5p mimic/inhibitor. Platelet-derived growth factor-B (PDGFB) was found to be a putative target of miR-432-5p and it was further confirmed that the PDGFB 3'UTR is directly targeted by miR-432-5p using the luciferase reporter gene system. PDGFB was found to be secreted by OS to regulate angiogenesis by targeting the cells in its microenvironment. The conditioned medium obtained from miR-432-5p mimic transfected MG63 and SaOS2 cells decreased cell viability, proliferation, migration, and aorta ring formation in endothelial cells. The miRNA mimic/inhibitor transfected MG63 and SaOS2 cells were placed on SA (day 6) and IA (day 9) phase of CAM development to analyze SA and IA mechanisms. It was found that miR-432-5p mimic transfection in OS promotes the transition of SA to IA which was documented by the angiogenic parameters and SA and IA-associated gene expression. Interestingly, this outcome was also supported by the zebrafish tumor xenograft model. Corroborating these results, it is clear that miR-432-5p expression in OS cells regulates SA and IA by targeting PDGFB genes. We conclude that targeting miR-432-5p/PDGFB signaling can be a potential therapeutic strategy to treat OS along with other existing strategies.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| | - Raghunandhakumar Subramanian
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Sekaran Saravanan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | | |
Collapse
|
9
|
Vimalraj S, Saravanan S, Hariprabu G, Yuvashree R, Ajieth Kanna SK, Sujoy K, Anjali D. Kaempferol-zinc(II) complex synthesis and evaluation of bone formation using zebrafish model. Life Sci 2020; 256:117993. [DOI: 10.1016/j.lfs.2020.117993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
|
10
|
Abstract
All organisms growing beyond the oxygen diffusion limit critically depend on a functional vasculature for survival. Yet blood vessels are far more than passive, uniform conduits for oxygen and nutrient supply. A remarkable organotypic heterogeneity is brought about by tissue-specific differentiated endothelial cells (lining the blood vessels' lumen) and allows blood vessels to deal with organ-specific demands for homeostasis. On the flip side, when blood vessels go awry, they promote life-threatening diseases characterized by endothelial cells inappropriately adopting an angiogenic state (eg, tumor vascularization) or becoming dysfunctional (eg, diabetic microvasculopathies), calling respectively for antiangiogenic therapies and proangiogenic/vascular regenerative strategies. In solid tumors, despite initial enthusiasm, growth factor-based (mostly anti-VEGF [vascular endothelial growth factor]) antiangiogenic therapies do not sufficiently live up to the expectations in terms of efficiency and patient survival, in part, due to intrinsic and acquired therapy resistance. Tumors cunningly deploy alternative growth factors than the ones targeted by the antiangiogenic therapies to reinstigate angiogenesis or revert to other ways of securing blood flow, independently of the targeted growth factors. In trying to alleviate tissue ischemia and to repair dysfunctional or damaged endothelium, local in-tissue administration of (genes encoding) proangiogenic factors or endothelial (stem) cells harnessing regenerative potential have been explored. Notwithstanding evaluation in clinical trials, these approaches are often hampered by dosing issues and limited half-life or local retention of the administered agents. Here, without intending to provide an all-encompassing historical overview, we focus on some recent advances in understanding endothelial cell behavior in health and disease and identify novel molecular players and concepts that could eventually be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Guy Eelen
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Lucas Treps
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| | - Peter Carmeliet
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| |
Collapse
|
11
|
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci 2020; 252:117670. [PMID: 32298741 DOI: 10.1016/j.lfs.2020.117670] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis is a key reason for tumor growth and progression. Several anti-angiogenic drugs in clinical practice attempt to normalize abnormal tumor vasculature. Unfortunately, these drugs are ineffective due to the development of resistance in patients after drug holidays. A sizable literature suggests that resistance to these anti-angiogenic drugs occurs due to various compensatory mechanisms of tumor angiogenesis. Therefore, we describe different compensatory mechanisms of tumor angiogenesis, and explain why intussusceptive angiogenesis (IA), is a crucial mechanism of compensatory angiogenesis in tumors which resist anti-VEGF (vascular endothelial growth factor) therapies. IA is often overlooked due to the scarcity of experimental models. Therefore, we examine data from existing experimental models and our novel ex-ovo model of angiogenesis in chick embryos, and explain the important genes and signaling pathways driving IA. Using bio-informatic analyses of major genes regulating conventional sprouting angiogenesis (SA) and intussusceptive angiogenesis, we provide fresh insights on the 'angiogenic switch' which regulates the transition from SA to IA. Finally, we examine the interplay between molecules regulating SA, IA, and molecules known to promote tumor progression. Based on these analyses, we conclude that intussusceptive angiogenesis (IA) is a promising therapeutic target for developing effective anti-cancer treatment regimes.
Collapse
Affiliation(s)
- Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Koka Pavani
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Ramesh Nikarika
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Venil N Sumantran
- Abdul Kalam Center for Innovation and Entrepreneurship, Dr. MGR Educational & Research Institute, Maduravoyal, Chennai 600095, India
| |
Collapse
|