1
|
Sobieralski P, Wasąg B, Leszczyńska A, Żuk M, Bieniaszewska M. The molecular profile in patients with polycythemia vera and essential thrombocythemia is dynamic and correlates with disease's phenotype. Front Oncol 2023; 13:1224590. [PMID: 37671053 PMCID: PMC10475996 DOI: 10.3389/fonc.2023.1224590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Polycythemia vera (PV) and essential thrombocythemia (ET) are diseases driven by canonical mutations in JAK2, CALR, or MPL gene. Previous studies revealed that in addition to driver mutations, patients with PV and ET can harbor other mutations in various genes, with no established impact on disease phenotype. We hypothesized that the molecular profile of patients with PV and ET is dynamic throughout the disease. Methods In this study, we performed a 37-gene targeted next-generation sequencing panel on the DNA samples collected from 49 study participants in two-time points, separated by 78-141 months. We identified 78 variants across 37 analyzed genes in the study population. Results By analyzing the change in variant allele frequencies and revealing the acquisition of new mutations during the disease, we confirmed the dynamic nature of the molecular profile of patients with PV and ET. We found connections between specific variants with the development of secondary myelofibrosis, thrombotic events, and response to treatment. We confronted our results with existing conventional and mutation-enhanced prognostic systems, showing the limited utility of available prognostic tools. Discussion The results of this study underline the significance of repeated molecular testing in patients with PV and ET and indicate the need for further research within this field to better understand the disease and improve available prognostic tools.
Collapse
Affiliation(s)
- Patryk Sobieralski
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Faculty of Medicine, Medical University of Gdańsk, Gdansk, Poland
- Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Aleksandra Leszczyńska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Żuk
- Department of Biology and Medical Genetics, Faculty of Medicine, Medical University of Gdańsk, Gdansk, Poland
- Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Li F, Lu ZY, Xue YT, Liu Y, Cao J, Sun ZT, Zhang Q, Xu MD, Wang XY, Xu KL, Wu QY. Molecular basis of JAK2 H608Y and H608N mutations in the pathology of acute myeloid leukemia. Int J Biol Macromol 2023; 229:247-259. [PMID: 36529225 DOI: 10.1016/j.ijbiomac.2022.12.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Risk-stratification of acute myeloid leukemia (AML) based on (cyto)genetic aberrations, including hotspot mutations, deletions and point mutations have evolved substantially in recent years. With the development of next-generation sequence technology, more and more novel mutations in the AML were identified. Thus, to unravel roles and mechanism of novel mutations would improve prognostic and predictive abilities. In this study, two novel germline JAK2 His608Tyr (H608Y) and His608Asn (H608N) mutations were identified and the molecular basis of these mutations in the leukemiagenesis of AML was elucidated. Our results indicated that JAK2 H608Y and H608N mutations disrupted the hydrogen bond between Q656 and H608 which reduced the JH2 domain's activity and abolished interactions between JH1 and JH2 domains, forced JAK2 into the active conformation, facilitated the entrance of substrates and thus caused JAK2 hyperactivation. Further studies suggested that JAK2 H608Y and H608N mutations enhanced the cell proliferation and inhibited the differentiation of Ba/F3 and MV4-11 cells via activating the JAK2-STAT5 signaling pathway. Moreover, rescue experiments demonstrated that mutations repaired the hydrogen bond between Q656 and H608 displayed opposite results. Thus, this study revealed the molecular basis of JAK2 H608Y and H608N mutations in the pathology of AML.
Collapse
Affiliation(s)
- Feng Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeng-Tian Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Di Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yun Wang
- College of Life Sciences, Shandong Agricultural University, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Wang S, Xia D, Wang X, Cao H, Wu C, Sun Z, Zhang D, Liu H. C/EBPβ regulates the JAK/STAT signaling pathway in triple-negative breast cancer. FEBS Open Bio 2021; 11:1250-1258. [PMID: 33660927 PMCID: PMC8016132 DOI: 10.1002/2211-5463.13138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
C/EBPβ is a member of the CCAAT/enhancer‐binding protein (C/EBP) family, which consists of a number of b‐ZIP transcription factors. Although C/EBPβ has been implicated in the development of certain cancers, including breast cancer, it remains unknown whether dysregulation of C/EBPβ in breast cancer is subtype‐specific. Moreover, the underlying mechanisms by which C/EBPβ regulates breast cancer carcinogenesis are not fully understood. Here, we present evidence that C/EBPβ is specifically overexpressed in human TNBC samples, but not in non‐TNBC samples. C/EBPβ depletion dramatically suppressed TNBC cell growth, migration, invasion, and colony formation ability. A subsequent mechanistic study revealed that the JAK/STAT signaling pathway was upregulated in C/EBPβ_high TNBC samples compared with C/EBPβ_low TNBC samples. C/EBPβ ChIP‐seq and qPCR were performed to demonstrate that C/EBPβ directly binds to and regulates JAK/STAT signaling pathway genes in TNBC. Taken together, our data indicate the oncogenic role of C/EBPβ in human TNBC and reveal a novel mechanism by which C/EBPβ promotes TNBC carcinogenesis.
Collapse
Affiliation(s)
- Shu Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Dian Xia
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Xianzhi Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China.,School of Pharmacy, Bengbu Medical College, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Chaoshen Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Zhaoran Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Daoyong Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, China
| |
Collapse
|
4
|
Favoino E, Prete M, Catacchio G, Ruscitti P, Navarini L, Giacomelli R, Perosa F. Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmun Rev 2021; 20:102750. [PMID: 33482338 DOI: 10.1016/j.autrev.2021.102750] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway is an important intracellular route through which many different extracellular soluble molecules, by reaching membrane receptors, can signal the nucleus. The spectrum of soluble molecules that use the JAK/STAT pathway through their corresponding receptors is quite large (almost 50 different molecules), and includes some cytokines involved in the pathogenesis of many immune-mediated diseases. Such diseases, when left untreated, present an evident hyperactivation of JAK/STAT signaling. Therefore, given the pathogenetic role of JAK/STAT, drugs known as JAK inhibitors (JAKi), that target one or more JAKs, have been developed to counteract JAK/STAT signal hyperactivation. As some hematological malignancies present an intrinsic JAK/STAT hyperactivation due to a JAK mutation, some JAKi have also been successfully used in this context. Regulatory agencies for drug administration in different countries have already approved a few JAKi in the setting of either immune-mediated diseases or hematological malignancies. Aim of this review is to describe the physiology of intracellular JAK/STAT pathway signaling and the pathological conditions associated to its dysregulation. Then, the rationale for targeting JAK in rheumatic autoimmune diseases is discussed, along with clinical data from registration studies showing the efficacy of these drugs. Finally, the excellent safety profile of JAKi is discussed in the context of the apparent poor specificity of JAK/STAT pathway signal.
Collapse
Affiliation(s)
- Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Marcella Prete
- Internal Medicine, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Giacomo Catacchio
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luca Navarini
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy.
| |
Collapse
|
5
|
Zhao P, Yang L, Li X, Lu W, Lu F, Wang S, Wang Y, Hua L, Cui C, Dong B, Yu Y, Wang L. Rae1 drives NKG2D binding-dependent tumor development in mice by activating mTOR and STAT3 pathways in tumor cells. Cancer Sci 2020; 111:2234-2247. [PMID: 32333709 PMCID: PMC7385386 DOI: 10.1111/cas.14434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer group 2 member D (NKG2D) ligands (NKG2DLs) on tumor cells engage NKG2D and mediate killing by NKG2D+ immune cells. However, tumor cells with high levels of NKG2DLs are still malignant and proliferate rapidly. We investigated the reason for NKG2DL-expressing cell progression. Tumor cells in mice were assessed for their NKG2DL expression, ability to attract immune cells, tumorigenicity, mTOR, and signal transducer and activator of transcription 3 (STAT3) signaling activation. Antibody blockade was used to determine the effect of NKG2DL-NKG2D interaction on signaling activation in vitro. Retinoic acid early inducible gene 1 (Rae1) was related to the expression of other NKG2DLs, the promotion of tumorigenicity, Mmp2 expression, mTOR and STAT3 phosphorylation in GL261 cells, and the recruitment of NKG2D+ cells in mice. Rae1 also induced NKG2DL expression, mTOR, and STAT3 phosphorylation in GL261 cells and LLC cells, but not in B16 and Pan02 cells, which did not express NKG2DLs, when cocultured with PBMCs; the induced phosphorylation was eliminated by Rae1-NKG2D blockade. Inhibition of mTOR and/or STAT3 decreased PBMC-induced migration and proliferation of GL261 cells in vitro. Rae1, a NKG2DL on tumor cells, plays a driving role in the expression of other NKG2DLs and in tumor development in mice by activating mTOR and STAT3 pathways, relying on its interaction with NKG2D on immune cells.
Collapse
Affiliation(s)
- Peiyan Zhao
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xin Li
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenting Lu
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Fangjie Lu
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shengnan Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ying Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Hua
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Boqi Dong
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences and Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
6
|
Roles of T875N somatic mutation in the activity, structural stability of JAK2 and the transformation of OCI-AML3 cells. Int J Biol Macromol 2019; 137:1030-1040. [PMID: 31299252 DOI: 10.1016/j.ijbiomac.2019.07.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/31/2023]
Abstract
Activating mutations in JAK2 have been described in patients with various hematologic malignancies including acute myeloid leukemia (AML) and myeloproliferative neoplasms. However, mechanism of these mutations in JAK2's activity, structural stability and pathology of AML remains poorly understood. The JAK2 T875N somatic mutation has been detected in about 5.2% of AML patients. But the structural basis and mechanism of JAK2 T875N mutation in the pathology of AML is still unclear. Our results suggested that JAK2 T875N mutation disrupted the T875 and D873 interaction which destroyed the compact structure of JH1 domain, forced it into the active conformation, facilitated the entrance of substrate and thus led to JAK2 hyperactivation. Mutations (T875N, T875A, D873A and D873G) disrupted the T875 and D873 interaction enhanced JAK2's activity, decreased its structural stability and JH2 domain's activity which further enhanced JAK2's activity, while mutations (T875R, D873E, T875R/D873E) repaired this interaction displayed opposite results. Moreover, JAK2 T875N mutation enhanced the activity of JAK2-STAT5 pathway, promoted the proliferation and transformation of OCI-AML3 cells. This study provides clues in understanding structural basis of T875N mutation caused JAK2 hyperactivation and its roles in the pathology of AML.
Collapse
|
7
|
Wu QY, Ma MM, Zhang S, Cao J, Yan ZL, Chen C, Li ZY, Zeng LY, Wang XY, Li F, Xu KL. Disruption of R867 and Y613 interaction plays key roles in JAK2 R867Q mutation caused acute leukemia. Int J Biol Macromol 2019; 136:209-219. [PMID: 31199972 DOI: 10.1016/j.ijbiomac.2019.06.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations were important for the leukemogenesis of acute leukemia (AL). The JAK2 R867Q somatic mutation is detected in a subset of AL patients. However, roles of JAK2 R867Q mutation in the pathogenesis of AL remain unclear. In this study, homology modeling analysis showed that loss of interaction between R867 and Y613 disrupted the JAK2 JH1/JH2 domain's interactions was responsible for its activation. JAK2 R867Q and mutations (R867A and R867G) abolished this interaction caused JAK2 constitutive activation. While, mutations (R867K, Y613E, R867K/Y613E) repairing this interaction reduced JAK2 R867Q mutation's activity. Furthermore, our studies showed that abolished R867 and Y613 interaction disrupted JH1/JH2 domains' interactions and led to JAK2 constitutive activation. More importantly, mutations (R867Q, R867A and R867G) disrupted this interaction enhanced the activity of JAK2-STAT5 pathway and the proliferation of Ba/F3 and MV4-11 cells. Further study showed that JAK2 R867Q mutation promoted the expression of proliferation marker and inhibited the differentiation marker of Ba/F3 and MV4-11 cells. Thus our studies provide clues in understanding the pathogenesis of JAK2 R867Q mutation in AL.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Ling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chong Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|