1
|
Chaturvedi M, Kaur N, Alam S, Sharma S. Sustainable Approach for Degradation of Low-Density Polyethylene Plastic Waste Using Ligninolytic White Rot Fungus. J Basic Microbiol 2025; 65:e2400442. [PMID: 39623736 DOI: 10.1002/jobm.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 04/08/2025]
Abstract
Bisphenol A (BPA), an endocrine disruptor is used in manufacturing of polycarbonate plastics for food-drink packaging. In the present study, optimized set of conditions to degrade commercial grade BPA has been used and applied in degrading shredded leached low-density polyethylene (LDPE) residues and its leachate (198 µg/L BPA) using white rot fungus Hypocrea lixii. One-at-a-time method showed maximum BPA degradation of 98.73 ± 0.02% with 190.1 ± 0.2 U/L laccase and 1913.2 ± 0.3 U/L lignin peroxidase in glucose-yeast extract-malt extract-peptone (GYMP) medium supplemented with 5% sawdust, mediators-CuSO4 (0.2 mM), veratryl alcohol (0.1 mM) and Tween 80 (0.1 mM). Three sets were prepared by dissolving these optimized nutritional components in leachates-A (only leachate), B (leached LDPE residues in leachate) and C (leached LDPE residues, sawdust in leachate). All sets showed 100% degradation in 5 days. Cracks and holes in degraded LDPE pieces was confirmed by SEM analysis and changes in functional groups by FTIR. Toxicity assay of treated leachate on soil microfauna revealed the elimination of BPA as it supported sufficient microbial growth of soil bacteria. Thus, the present process provides a sustainable solution for the management of LDPE with the possibility of using treated leachate for irrigation.
Collapse
Affiliation(s)
- Mridula Chaturvedi
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Navpreet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Samsul Alam
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Gurgaon, Haryana, India
| | - Shashi Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Rajarathinam T, Jayaraman S, Kim CS, Yoon JH, Chang SC. Two-dimensional nanozyme nanoarchitectonics customized electrochemical bio diagnostics and lab-on-chip devices for biomarker detection. Adv Colloid Interface Sci 2025; 341:103474. [PMID: 40121951 DOI: 10.1016/j.cis.2025.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Recent developments in nanomaterials and nanotechnology have advanced biosensing research. Two-dimensional (2D) nanomaterials or nanozymes, such as metal oxides, graphene and its derivatives, transition metal dichalcogenides, metal-organic frameworks, carbon-organic frameworks and MXenes, have garnered substantial attention in recent years owing to their unique properties, including high surface area, excellent electrical conductivity, and mechanical flexibility. Moreover, 2D nanozymes exhibit intrinsic enzyme-mimicking properties, including those of peroxidase, oxidase, catalase, and superoxide dismutase, making them well-suited for detecting biomarkers of interest and developing bio diagnostics at the point-of-care. Since 2D nanosystems offer ultra-high sensitivity, label-free detection, and real-time analysis, point-of-care testing and multiplexed biomarker detection, the demand is growing. Additionally, their biocompatibility and scalable fabrication make them cost-effective for widespread adoption. This review discusses the advantages of 2D nanozymes and their recent advancements in biosensing applications. This review summarizes the latest developments in 2D nanozymes, focusing on their synthesis, biocatalytic capabilities, and advancements in developing bio diagnostics and lab-on-chip devices for detecting cancer and non-cancer biomarkers. In addition, existing challenges and prospects in 2D nanozyme-based biosensors are identified, highlighting their biosensing potential and advocating for their expanded application in bio diagnostics and lab-on-chip devices.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Goswami D, Mukherjee J, Mondal C, Bhunia B. Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176426. [PMID: 39326754 DOI: 10.1016/j.scitotenv.2024.176426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The synthetic azo dyes are widely used in the textile industries for their excellent dyeing properties. They may be classified into many classes based on their structure and application, including direct, reactive, dispersive, acidic, basic, and others. The continuous discharge of wastewater from a large number of textile industries without prior treatment poses detrimental effects on the environment and human health. Azo dyes and their degradation products are extremely poisonous for their carcinogenic, teratogenic and mutagenic nature. Moreover, exposure to synthetic azo dyes can cause genetic changes, skin inflammation, hypersensitivity responses, and skin irritations in persons, which may ultimately result in other profound issues including the deterioration of water quality. This review discusses these dyes in details along with their detrimental effects on aquatic and terrestrial flora and fauna including human beings. Azo dyes degrade the water bodies by increasing biochemical and chemical oxygen demand. Therefore, dye-containing wastewater should be effectively treated using eco-friendly and cost-effective technologies to avoid negative impact on the environment. This article extensively reviews on physical, chemical and biological treatment with their benefits and challenges. Biological-based treatment with higher hydraulic retention time (HRT) is economical, consumes less energy, produces less sludge and environmentally friendly. Whereas the physical and chemical methods with less hydraulic retention time is costly, produces large sludge, requires high dissolved oxygen and ecologically inefficient. Since, biological treatment is more advantageous over physical and chemical methods, researchers are concentrating on bioremediation for eliminating harmful azo dye pollutants from nature. This article provides a thorough analysis of the state-of-the-art biological treatment technologies with their developments and effectiveness in the removal of azo dyes. The mechanism by which genes encoding azoreductase enzymes (azoG, and azoK) enable the natural degradation of azo dyes by bacteria and convert them into less harmful compounds is also extensively examined. Therefore, this review also focuses on the use of genetically modified microorganisms and nano-technological approaches for bioremediation of azo dyes.
Collapse
Affiliation(s)
- Deepa Goswami
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana 501401, India
| | - Chanchal Mondal
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
4
|
He L, Yan M, Naeem M, Chen M, Chen Y, Ni Z, Chen H. Enhancing Manganese Peroxidase: Innovations in Genetic Modification, Screening Processes, and Sustainable Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26040-26056. [PMID: 39535434 DOI: 10.1021/acs.jafc.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Manganese peroxidase (MnP), a vital extracellular enzyme for the degradation of lignin and other organic pollutants, has demonstrated immense potential for agricultural and environmental applications, including straw pretreatment, feed fermentation, mycotoxin degradation, and water treatment. However, current research remains in its exploratory phase, with naturally sourced MnP unable to meet industrial-scale demands and no mature commercial enzyme preparations available on the market. This comprehensive review innovatively constructs a framework for MnP research, probing into its molecular conformation and catalytic principles, while providing an overview of the advancements in high-throughput screening and In silco designing strategies. Specifically, this review focuses on the practical applications of MnP in sustainable agriculture, elaborating on its potential and challenges in straw resource utilization, efficient feed fermentation, mycotoxin control, and water quality improvement. Furthermore, this review summarizes the recent achievements in optimizing MnP activity through enzyme engineering techniques and discuss customized mutation strategies tailored to specific agricultural and environmental requirements, thereby laying a solid theoretical foundation and scientific basis for the industrial production and commercialization of MnP.
Collapse
Affiliation(s)
- Lu He
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Naeem
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Minghaonan Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
5
|
Aounallah F, Hkiri N, Fouzai K, Elaoud A, Ayed L, Asses N. Biodegradation Pathway of Congo Red azo dye by Geotrichum candidum and Toxicity Assessment of Metabolites. Catal Letters 2024; 154:6064-6079. [DOI: 10.1007/s10562-024-04777-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/07/2024] [Indexed: 01/05/2025]
|
6
|
Zeng G, Ma Z, Zhang R, He Y, Fan X, Lei X, Xiao Y, Zhang M, Sun D. The Application of Nano Zero-Valent Iron in Synergy with White Rot Fungi in Environmental Pollution Control. TOXICS 2024; 12:721. [PMID: 39453141 PMCID: PMC11511283 DOI: 10.3390/toxics12100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Developing efficient and sustainable pollution control technologies has become a research priority in the context of escalating global environmental pollution. Nano zero-valent iron (nZVI), with its high specific surface area and strong reducing power, demonstrates remarkable performance in pollutant removal. Still, its application is limited by issues such as oxidation, passivation, and particle aggregation. White rot fungi (WRF) possess a unique enzyme system that enables them to degrade a wide range of pollutants effectively, yet they face challenges such as long degradation cycles and low degradation efficiency. Despite the significant role of nZVI in pollutant remediation, most contaminated sites still rely on microbial remediation as a concurrent or ultimate treatment method to achieve remediation goals. The synergistic combination of nZVI and WRF can leverage their respective advantages, thereby enhancing pollution control efficiency. This paper reviews the mechanisms, advantages, and disadvantages of nZVI and WRF in pollution control, lists application examples, and discusses their synergistic application in pollution control, highlighting their potential in pollutant remediation and providing new insights for combined pollutant treatment. However, research on the combined use of nZVI and WRF for pollutant remediation is still relatively scarce, necessitating a deeper understanding of their synergistic potential and further exploration of their cooperative interactions.
Collapse
Affiliation(s)
- Guoming Zeng
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Chongqing Academy of Science and Technology, Chongqing 401123, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Intelligent Construction Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China
| | - Zilong Ma
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Rui Zhang
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yu He
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xuanhao Fan
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Lei
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Yong Xiao
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Maolan Zhang
- School of Metallurgy and Power Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
7
|
Rammala BJ, Ramchuran S, Chunilall V, Zhou N. Enterobacter spp. isolates from an underground coal mine reveal ligninolytic activity. BMC Microbiol 2024; 24:382. [PMID: 39354380 PMCID: PMC11443738 DOI: 10.1186/s12866-024-03537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Lignin, the second most abundant renewable carbon source on earth, holds significant potential for producing biobased specialty chemicals. However, its complex, highly branched structure, consisting of phenylpropanoic units and strong carbon-carbon and ether bonds, makes it highly resistant to depolymerisation. This recalcitrancy highlights the need to search for robust lignin-degrading microorganisms with potential for use as industrial strains. Bioprospecting for microorganisms from lignin-rich niches is an attractive approach among others. Here, we explored the ligninolytic potential of bacteria isolated from a lignin-rich underground coalmine, the Morupule Coal Mine, in Botswana. Using a culture-dependent approach, we screened for the presence of bacteria that could grow on 2.5% kraft lignin-supplemented media and identified them using 16 S rRNA sequencing. The potential ligninolytic isolates were evaluated for their ability to tolerate industry-associated stressors. We report the isolation of twelve isolates with ligninolytic abilities. Of these, 25% (3) isolates exhibited varying robust ligninolytic ability and tolerance to various industrial stressors. The molecular identification revealed that the isolates belonged to the Enterobacter genus. Two of three isolates had a 16 S rRNA sequence lower than the identity threshold indicating potentially novel species pending further taxonomic review. ATR-FTIR analysis revealed the ligninolytic properties of the isolates by demonstrating structural alterations in lignin, indicating potential KL degradation, while Py-GC/MS identified the resulting biochemicals. These isolates produced chemicals of diverse functional groups and monomers as revealed by both methods. The use of coalmine-associated ligninolytic bacteria in biorefineries has potential.
Collapse
Affiliation(s)
- Bame J Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana, South Africa.
| | - Santosh Ramchuran
- Council for Science and Industrial Research, Chemicals Cluster, Pretoria, South Africa
| | - Viren Chunilall
- Council for Science and Industrial Research, Biorefinery Industry Development Facility, Durban, South Africa
- School of Life Sciences, School of Engineering, University of KwaZulu Natal, Durban, South Africa
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana, South Africa.
| |
Collapse
|
8
|
Shen C, Wang Y. Recent Progress on Peroxidase Modification and Application. Appl Biochem Biotechnol 2024; 196:5740-5764. [PMID: 38180646 DOI: 10.1007/s12010-023-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Peroxdiase is one of the member of oxireductase super family, which has a broad substrate range and a variety of reaction types, including hydroxylation, epoxidation or halogenation of unactivated C-H bonds, and aromatic group or biophenol compounds. Here, we summarized the recently discovered enzymes with peroxidation activity, and focused on the special structures, sites, and corresponding strategies that can change the peroxidase catalytic activity, stability, and substrate range. The comparison of the structural differences between these natural enzymes and the mimic enzymes of binding nanomaterials and polymer materials is helpful to expand the application of peroxidase in industry. In addition, we also reviewed the catalytic application of peroxidase in the synthesis of important organic molecules and the degradation of pollutants.
Collapse
Affiliation(s)
- Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, 050018, China.
| | - Yongfa Wang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China
| |
Collapse
|
9
|
Ji T, Liaqat F, Khazi MI, Liaqat N, Nawaz MZ, Zhu D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. INDUSTRIAL CROPS AND PRODUCTS 2024; 216:118759. [DOI: 10.1016/j.indcrop.2024.118759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
10
|
Vanin AP, Visentin EZ, Fontana RC, di Medeiros Leal MCB, de Avila E Silva S, Stokke BT, Carbonero ER, Camassola M. β-(1 → 3)(1 → 6)glucan from Schizophyllum commune 227E.32: High yield production via glucose/xylose co-metabolization. Carbohydr Polym 2023; 320:121176. [PMID: 37659785 DOI: 10.1016/j.carbpol.2023.121176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 09/04/2023]
Abstract
A co-metabolization of xylose and glucose by Schizophyllum commune 227E.32 wild mushroom for exopolysaccharide (EPS) production is presented. Cultivations performed with S. commune 227E.32 at different xylose concentrations demonstrated that the concentration of 50 g·L-1 of xylose achieved the highest EPS production, around 4.46 g·L-1. Scale-up in a stirred tank reactor (STR) was performed. 10 % inoculum showed the highest cost/benefit ratio regarding sugar conversion and EPS production (Y P/S = 0.90 g·g-1), achieving 1.82 g·L-1 of EPS. Isolation, purification, and characterization were conducted with EPS produced in flasks and STR. GC-MS analysis showed glucose as main monosaccharide constituents for both isolates. 13C NMR and HSQC-edited showed that both EPS isolated consisted of a β-D-Glcp (1 → 3) main chain, partially substituted at O-6 with nonreducing β-D-Glcp ends on every third residue, similar to β-D-glucan isolated from S. commune basidiomes known as schizophyllan (SPG). The Mw was determined by GPC to 1.5 × 106 Da (flasks) and 1.1 × 106 Da (STR). AFM topographs revealed a semi-flexible appearance of the β-D-glucan, consistent with the triple helical structures adopted by SPG and overall contour length consistent with a high molar mass.
Collapse
Affiliation(s)
- Ana Paula Vanin
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil.
| | - Esther Ziliotto Visentin
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Roselei Claudete Fontana
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | - Scheila de Avila E Silva
- Computational Biology and Bioinformatics Laboratory, Bioinformatics Research Center, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Marli Camassola
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| |
Collapse
|
11
|
Sharma N, Agarwal A, Bijoy A, Pandit S, Sharma RK. Lignocellulolytic extremozymes and their biotechnological applications. Extremophiles 2023; 28:2. [PMID: 37950773 DOI: 10.1007/s00792-023-01314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Abstract
Lignocellulolytic enzymes are used in different industrial and environmental processes. The rigorous operating circumstances of these industries, however, might prevent these enzymes from performing as intended. On the other side, extremozymes are enzymes produced by extremophiles that can function in extremely acidic or basic; hot or cold; under high or low salinity conditions. These severe conditions might denature the normal enzymes that are produced by mesophilic microorganisms. The increased stability of these enzymes has been contributed to a number of conformational modifications in their structures. These modifications may result from a few amino acid substitutions, an improved hydrophobic core, the existence of extra ion pairs and salt bridges, an increase in compactness, or an increase in positively charged amino acids. These enzymes are the best option for industrial and bioremediation activities that must be carried out under difficult conditions due to their improved stability. The review, therefore, discusses lignocellulolytic extremozymes, their structure and mechanisms along with industrial and biotechnological applications.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Aditi Agarwal
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Ananya Bijoy
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Sunidhi Pandit
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, India.
| |
Collapse
|
12
|
Huang J, Wang J, Liu S. Advances in the production of fungi-derived lignocellulolytic enzymes using agricultural wastes. Mycology 2023; 15:523-537. [PMID: 39678642 PMCID: PMC11636153 DOI: 10.1080/21501203.2023.2253827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2024] Open
Abstract
Lignocellulolytic enzymes play an important role in various industrial applications as well as the sustainable valorisation of lignocellulosic materials. Enzyme production using lignocellulosic fungi has shown great advantages such as high enzyme diversity, high production efficiency, and the availability of solid waste as raw materials. Agricultural waste, an abundant and non-food competitive feedstock, can be used to produce fungal lignocellulolytic enzymes. Pretreatment helps break down the complex structure of the raw material, thereby significantly improving product yield but also requiring more energy consumption. Multiple fermentation technologies, including submerged fermentation, solid-state fermentation, and co-culture, can be used for producing lignocellulolytic enzymes. Process optimisation may promote the yield and productivity of such enzymes without additional investment. Genetic engineering is also useful for enhancing enzyme production to meet industrial requirements. This review summarises the research progress in the fungal production of lignocellulolytic enzymes from various agricultural wastes via advanced fermentation strategies. It aims to provide technical references for the scale-up production of fungal lignocellulolytic enzymes.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
13
|
Rawal RS, Mehant A, Suman SK. Deciphering ligninolytic enzymes in the secretome of Pycnoporus sp. and their potential in degradation of 2-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92830-92841. [PMID: 37495802 DOI: 10.1007/s11356-023-28932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Chlorophenols and their derivatives are persistent environmental pollutants, posing a threat to terrestrial and aquatic life. The biological approach for eliminating toxic contaminants is an effective, sustainable, and environmental friendly method. In this study, the crude enzymes present in the secretome of white-rot fungus (Pycnoporus sp.) were explored for the degradation of 2-chlorophenol. The activity of ligninolytic enzymes in the secretome was analyzed and characterized for their kinetics and thermodynamic properties. Laccase and manganese peroxidase were prevalent ligninolytic enzymes and exhibited temperature stability in the range of 50-65 °C and pH 4-5, respectively. The kinetic parameters Michaelis constant (Km) and turnover number (Kcat) for Lac were 42.54 μM and 45 s-1 for 2,2'-azino-bis (3-ethylben- zothiazoline-6-sulfonic acid), and 93.56 μM and 48 s-1 towards 2,6-dimethoxyphenol whereas Km and Kcat for MnP were 2039 μM and 294 s-1 for guaiacol as substrate. Treatment with the crude enzymes laccase and manganese peroxidase results in the reduction of 2-chlorophenol concentration, confirmed by UV-visible absorption spectra and high-performance liquid chromatography analysis. The detoxification of 2-chlorophenol into less toxic forms was confirmed by the plate toxicity assay. This study demonstrated that crude enzymes produced by Pycnoporus sp. could potentially minimize the toxicity of phenolic compounds in a sustainable way.
Collapse
Affiliation(s)
- Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditri Mehant
- Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fernández-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology. Int J Biol Macromol 2023; 242:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational framework, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670, Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland.
| |
Collapse
|
15
|
Bilal M, Zdarta J, Jesionowski T, Iqbal HMN. Manganese peroxidases as robust biocatalytic tool - An overview of sources, immobilization, and biotechnological applications. Int J Biol Macromol 2023; 234:123531. [PMID: 36754266 DOI: 10.1016/j.ijbiomac.2023.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
With robust catalytic features, manganese peroxidases (MnPs) from various sources, including fungi and bacteria, have gained much consideration in many biotechnological applications with particular emphasis on environmental remediation. MnP is a heme-containing enzyme that belongs to the oxidoreductases that can catalyze the degradation of various organic pollutants, such as chlorophenols, nitroaromatic compounds, industrial dyes, and polycyclic aromatic hydrocarbons. To spotlight the MnP as biocatalytic tool, an effort has been put forward to cover the four major compartments. For instance, following a brief introduction, first, various microbial sources of MnP are discussed with examples. Second, structural attributes and biocatalytic features of MnP are given with examples. Third, different MnP immobilization strategies, including adsorption, covalent linking, entrapment, and cross-linking, are discussed with a significant motive to strengthen the enzyme's stability against diverse deactivation agents by restricting the conformational mobility of molecules. Compared to free counterparts, immobilized MnP fractions perform well in hostile environments. Finally, various biotechnological applications, such as fuel ethanol production, de-lignification, textile industry, pulp and paper industry, degradation of phenolic and non-phenolic compounds, and pharmaceutical and pesticide degradation, are briefly discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
16
|
Sun S, Liu P, Ullah M. Efficient Azo Dye Biodecolorization System Using Lignin-Co-Cultured White-Rot Fungus. J Fungi (Basel) 2023; 9:jof9010091. [PMID: 36675912 PMCID: PMC9866751 DOI: 10.3390/jof9010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
The extensive use of azo dyes by the global textile industry induces significant environmental and human health hazards, which makes efficient remediation crucial but also challenging. Improving dye removal efficiency will benefit the development of bioremediation techniques for textile effluents. In this study, an efficient system for azo dye (Direct Red 5B, DR5B) biodecolorization is reported, which uses the white-rot fungus Ganoderma lucidum EN2 and alkali lignin. This study suggests that the decolorization of DR5B could be effectively enhanced (from 40.34% to 95.16%) within 48 h in the presence of alkali lignin. The dye adsorption test further confirmed that the alkali-lignin-enhanced decolorization of DR5B was essentially due to biodegradation rather than physical adsorption, evaluating the role of alkali lignin in the dye biodegradation system. Moreover, the gas chromatography/mass spectrometry analysis and DR5B decolorization experiments also indicated that alkali lignin carried an excellent potential for promoting dye decolorization and displayed a significant role in improving the activity of lignin-modifying enzymes. This was mainly because of the laccase-mediator system, which was established by the induced laccase activity and lignin-derived small aromatic compounds.
Collapse
Affiliation(s)
- Su Sun
- College of Urban Construction, Wuchang Shouyi University, Wuhan 430064, China
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence:
| | - Pengyang Liu
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Key Laboratory of Molecular Biophysics of MOE, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Gan J, Bilal M, Li X, Hussain Shah SZ, Mohamed BA, Hadibarata T, Cheng H. Peroxidases-based enticing biotechnological platforms for biodegradation and biotransformation of emerging contaminants. CHEMOSPHERE 2022; 307:136035. [PMID: 35973503 DOI: 10.1016/j.chemosphere.2022.136035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Rampant industrial boom, urbanization, and exponential population growth resulted in widespread environmental pollution, with water being one of the leading affected resources. All kinds of pollutants, including phenols, industrial dyes, antibiotics, pharmaceutically active residues, and persistent/volatile organic compounds, have a paramount effect, either directly or indirectly, on human health and aquatic entities. Strategies for affordable and efficient decontamination of these emerging pollutants have become the prime focus of academic researchers, industry, and government to constitute a sustainable human society. Classical treatment techniques for environmental contaminants are associated with several limitations, such as inefficiency, complex pretreatments, overall high process cost, high sludge generation, and highly toxic side-products formation. Enzymatic remediation is considered a green and ecologically friendlier method that holds considerable potential to mitigate any kinds of contaminating agents. Exploiting the potential of various peroxidases for pollution abatement is an emerging research area and has considerable advantages, such as efficiency and ease of handling, over other methods. This work is designed to provide recent progress in deploying peroxidases as green and versatile biocatalytic tools for the degradation and transformation of a spectrum of potentially hazardous environmental pollutants to broaden their scope for biotechnological and environmental purposes. More studies are required to explicate the degradation mechanisms, assess the toxicology levels of bio-transformed metabolites, and standardize the treatment strategies for economic viability.
Collapse
Affiliation(s)
- JianSong Gan
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China; School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - XiaoBing Li
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China.
| | | | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, Egypt
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009, Malaysia
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
18
|
Synergistic Degradation of Maize Straw Lignin by Manganese Peroxidase from Irpex lacteus. Appl Biochem Biotechnol 2022; 195:3855-3871. [PMID: 36251112 DOI: 10.1007/s12010-022-04189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Lignocellulose in maize straw includes cellulose, hemicellulose, and lignin, and the degradation of lignocellulose is a complex process in which multiple enzymes are jointly involved. In exploring the co-degradation of a certain substrate by multiple enzymes, different enzymes are combined freely for the achievement of the effective synergism. Additionally, some organic acids and small molecule aromatic compounds can also increase the enzymatic activity of lignin enzymes and improve the degradation rate of lignin. In this study, manganese peroxidase (MnP) from Irpex lacteus (I. lacteus) was heterologously expressed in food-grade Schizosaccharomyces pombe (S. pombe). The multiple enzymes co-fermentation conditions were initially screened by orthogonal tests: 0.5% CaCl2, 1% 10,000 U/g Laccase (Lac), 0.3% MnSO4, and 0.4% glucose oxidase (GOD). It was showed that the lignin degradation rate could reach 65.85% after 3 days of synergistic degradation with the addition of 0.02% Tween-80, 0.5 mM oxalic acid. This indicates that oxalic acid has a promoting effect on the activity of MnP, and the promoting effect is more significant when Tween-80 is complexed with oxalic acid.
Collapse
|
19
|
Biochemical and molecular characterization of a new heme peroxidase from Aspergillus niger CTM10002, and its application in textile reactive dye decolorization. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Saikia S, Yadav M, Hoque RA, Yadav HS. Bioremediation mediated by manganese peroxidase – An overview. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2113517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shilpa Saikia
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| | - Meera Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| | - Rohida Amin Hoque
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| |
Collapse
|
21
|
Thampraphaphon B, Phosri C, Pisutpaisal N, Thamvithayakorn P, Chotelersak K, Sarp S, Suwannasai N. High Potential Decolourisation of Textile Dyes from Wastewater by Manganese Peroxidase Production of Newly Immobilised Trametes hirsuta PW17-41 and FTIR Analysis. Microorganisms 2022; 10:microorganisms10050992. [PMID: 35630435 PMCID: PMC9143691 DOI: 10.3390/microorganisms10050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Coloured wastewater from the textile industry is a very serious global problem. Among 16 different white-rot fungal isolates, Trametes hirsuta PW17-41 revealed high potential for decolourisation of mixed textile dyes (Navy EC-R, Ruby S3B and Super Black G) from real industrial wastewater samples. The efficiency of dye decolourisation was evaluated using the American Dye Manufacturers’ Institute (ADMI) standard methodology. The suitable support for fungal mycelium immobilisation was nylon sponges. The optimal dye decolourisation (95.39%) was achieved by using palm sugar and ammonium nitrate as carbon and nitrogen sources, respectively. The initial pH was 5 and the agitation speed was 100 rpm at 30 °C. The ADMI values of textile dyes decreased from 2475 to 114 within two days, reducing the treatment time from seven days before optimisation. The major mechanism of dye decolourisation was biodegradation, which was confirmed by UV–visible and FTIR spectra. Manganese peroxidase (MnP) (4942 U L−1) was found to be the main enzyme during the decolourisation process at an initial dye concentration of 21,200 ADMI. The results indicated the strong potential of immobilised fungal cells to remove high concentrations of textile dyes from industrial wastewater and their potential ability to produce high MnP and laccase activities that can be used in further application.
Collapse
Affiliation(s)
- Bancha Thampraphaphon
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (B.T.); (P.T.)
| | - Cherdchai Phosri
- Department of Biology, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
| | - Nipon Pisutpaisal
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Pisit Thamvithayakorn
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (B.T.); (P.T.)
| | - Kruawan Chotelersak
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand;
| | - Sarper Sarp
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, UK;
| | - Nuttika Suwannasai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (B.T.); (P.T.)
- Correspondence: ; Tel.: +66-2-6495000 (ext. 18519)
| |
Collapse
|
22
|
Bharathi D, Nandagopal JGT, Ranjithkumar R, Gupta PK, Djearamane S. Microbial approaches for sustainable remediation of dye-contaminated wastewater: a review. Arch Microbiol 2022; 204:169. [PMID: 35157149 DOI: 10.1007/s00203-022-02767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.
Collapse
Affiliation(s)
- Devaraj Bharathi
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamil Nadu, 641028, India.
| | | | | | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900, Kampar, Perak, Malaysia
| |
Collapse
|
23
|
Maibeche R, Boucherba N, Bendjeddou K, Prins A, Bouiche C, Hamma S, Benhoula M, Azzouz Z, Bettache A, Benallaoua S, Le Roes-Hill M. Peroxidase-producing actinobacteria from Algerian environments and insights from the genome sequence of peroxidase-producing Streptomyces sp. S19. Int Microbiol 2022; 25:379-396. [DOI: 10.1007/s10123-022-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
|
24
|
Ibrahim A, El-Fakharany EM, Abu-Serie MM, ElKady MF, Eltarahony M. Methyl Orange Biodegradation by Immobilized Consortium Microspheres: Experimental Design Approach, Toxicity Study and Bioaugmentation Potential. BIOLOGY 2022; 11:76. [PMID: 35053074 PMCID: PMC8772785 DOI: 10.3390/biology11010076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Methyl orange (MO) is categorized among the recalcitrant and refractory xenobiotics, representing a significant burden in the ecosystem. To clean-up the surrounding environment, advances in microbial degradation have been made. The main objective of this study was to investigate the extent to which an autochthonous consortium immobilized in alginate beads can promote an efficient biodegradation of MO. By employing response surface methodology (RSM), a parametric model explained the interaction of immobilized consortium (Raoultella planticola, Ochrobactrum thiophenivorans, Bacillus flexus and Staphylococcus xylosus) to assimilate 200 mg/L of MO in the presence of 40 g/L of NaCl within 120 h. Physicochemical analysis, including UV-Vis spectroscopy and FTIR, and monitoring of the degrading enzymes (azoreductase, DCIP reductase, NADH reductase, laccase, LiP, MnP, nitrate reductase and tyrosinase) were used to evaluate MO degradation. In addition, the toxicity of MO-degradation products was investigated by means of phytotoxicity and cytotoxicity. Chlorella vulgaris retained its photosynthetic performance (>78%), as shown by the contents of chlorophyll-a, chlorophyll-b and carotenoids. The viability of normal lung and kidney cell lines was recorded to be 90.63% and 99.23%, respectively, upon exposure to MO-metabolic outcomes. These results reflect the non-toxicity of treated samples, implying their utilization in ferti-irrigation applications and industrial cooling systems. Moreover, the immobilized consortium was employed in the bioremediation of MO from artificially contaminated agricultural and industrial effluents, in augmented and non-augmented systems. Bacterial consortium remediated MO by 155 and 128.5 mg/L in augmented systems of agricultural and industrial effluents, respectively, within 144 h, revealing its mutual synergistic interaction with both indigenous microbiotas despite differences in their chemical, physical and microbial contents. These promising results encourage the application of immobilized consortium in bioaugmentation studies using different resources.
Collapse
Affiliation(s)
- Amany Ibrahim
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11566, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Marwa F. ElKady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University for Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt;
- Fabrication Technology Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
25
|
The Manganese Peroxidase Gene Family of Trametes trogii: Gene Identification and Expression Patterns Using Various Metal Ions under Different Culture Conditions. Microorganisms 2021; 9:microorganisms9122595. [PMID: 34946196 PMCID: PMC8704794 DOI: 10.3390/microorganisms9122595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Manganese peroxidases (MnPs), gene family members of white-rot fungi, are necessary extracellular enzymes that degrade lignocellulose and xenobiotic aromatic pollutants. However, very little is known about the diversity and expression patterns of the MnP gene family in white-rot fungi, especially in contrast to laccases. Here, the gene and protein sequences of eight unique MnP genes of T. trogii S0301 were characterized. Based on the characteristics of gene sequence, all TtMnPs here belong to short-type hybrid MnP (type I) with an average protein length of 363 amino acids, 5–6 introns, and the presence of conserved cysteine residues. Furthermore, analysis of MnP activity showed that metal ions (Mn2+ and Cu2+) and static liquid culture significantly influenced MnP activity. A maximum MnP activity (>14.0 U/mL) toward 2,6-DMP was observed in static liquid culture after the addition of Mn2+ (1 mM) or Cu2+ (0.2 or 2 mM). Moreover, qPCR analysis showed that Mn2+ obviously upregulated the Group I MnP subfamily (T_trogii_09901, 09904, 09903, and 09906), while Cu2+ and H2O2, along with changing temperatures, mainly induced the Group II MnP subfamily (T_trogii_11984, 11971, 11985, and 11983), suggesting diverse functions of fungal MnPs in growth and development, stress response, etc. Our studies here systematically analyzed the gene structure, expression, and regulation of the TtMnP gene family in T. trogii, one of the important lignocellulose-degrading fungi, and these results extended our understanding of the diversity of the MnP gene family and helped to improve MnP production and appilications of Trametes strains and other white-rot fungi.
Collapse
|
26
|
Saini S, Sharma KK. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Int J Biol Macromol 2021; 193:2304-2319. [PMID: 34800524 DOI: 10.1016/j.ijbiomac.2021.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023]
Abstract
The continuous increase in the global energy demand has diminished fossil fuel reserves and elevated the risk of environmental deterioration and human health. Biorefinery processes involved in producing bio-based energy-enriched chemicals have paved way to meet the energy demands. Compared to the thermochemical processes, fungal system biorefinery processes seems to be a promising approach for lignocellulose conversion. It also offers an eco-friendly and energy-efficient route for biofuel generation. Essentially, ligninolytic white-rot fungi and their enzyme arsenals degrade the plant biomass into structural constituents with minimal by-products generation. Hemi- or cellulolytic enzymes from certain soft and brown-rot fungi are always favoured to hydrolyze complex polysaccharides into fermentable sugars and other value-added products. However, the cost of saccharifying enzymes remains the major limitation, which hinders their application in lignocellulosic biorefinery. In the past, research has been focused on the role of lignocellulolytic fungi in biofuel production; however, a cumulative study comprising the contribution of the lignocellulolytic enzymes in biorefinery technologies is still lagging. Therefore, the overarching goal of this review article is to discuss the major contribution of lignocellulolytic fungi and their enzyme arsenal in global biofuel research and multiproduct biorefinery.
Collapse
Affiliation(s)
- Sonu Saini
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
27
|
Al-Tohamy R, Sun J, Khalil MA, Kornaros M, Ali SS. Wood-feeding termite gut symbionts as an obscure yet promising source of novel manganese peroxidase-producing oleaginous yeasts intended for azo dye decolorization and biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:229. [PMID: 34863263 PMCID: PMC8645103 DOI: 10.1186/s13068-021-02080-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/18/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production. RESULTS Out of 38 yeast isolates screened from wood-feeding termite gut symbionts, nine isolates exhibited high levels of extracellular manganese peroxidase (MnP) activity ranged between 23 and 27 U/mL after 5 days of incubation in an optimal substrate. Of these MnP-producing yeasts, four strains had lipid accumulation greater than 20% (oleaginous nature), with Meyerozyma caribbica SSA1654 having the highest lipid content (47.25%, w/w). In terms of tolerance to lignocellulose degradation inhibitors, the four MnP-producing oleaginous yeast strains could grow in the presence of furfural, 5-hydroxymethyl furfural, acetic acid, vanillin, and formic acid in the tested range. M. caribbica SSA1654 showed the highest tolerance to furfural (1.0 g/L), 5-hydroxymethyl furfural (2.5 g/L) and vanillin (2.0 g/L). Furthermore, M. caribbica SSA1654 could grow in the presence of 2.5 g/L acetic acid but grew moderately. Furfural and formic acid had a significant inhibitory effect on lipid accumulation by M. caribbica SSA1654, compared to the other lignocellulose degradation inhibitors tested. On the other hand, a new MnP-producing oleaginous yeast consortium designated as NYC-1 was constructed. This consortium demonstrated effective decolorization of all individual azo dyes tested within 24 h, up to a dye concentration of 250 mg/L. The NYC-1 consortium's decolorization performance against Acid Orange 7 (AO7) was investigated under the influence of several parameters, such as temperature, pH, salt concentration, and co-substrates (e.g., carbon, nitrogen, or agricultural wastes). The main physicochemical properties of biodiesel produced by AO7-degraded NYC-1 consortium were estimated and the results were compared to those obtained from international standards. CONCLUSION The findings of this study open up a new avenue for using peroxidase-producing oleaginous yeasts inhabiting wood-feeding termite gut symbionts, which hold great promise for the remediation of recalcitrant azo dye wastewater and lignocellulosic biomass for biofuel production.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
| | - Maha A Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, 1 Karatheodori Str, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
28
|
Sijinamanoj V, Muthukumar T, Muthuraja R, Rayappan K, Karmegam N, Saminathan K, Govarthanan M, Kathireswari P. Ligninolytic valorization of agricultural residues by Aspergillus nomius and Trichoderma harzianum isolated from gut and comb of Odontotermes obesus (Termitidae). CHEMOSPHERE 2021; 284:131384. [PMID: 34323800 DOI: 10.1016/j.chemosphere.2021.131384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Fungi produce enzymes that degrade the complex lignin thereby enabling the efficient utilization of plant lignocellulosic biomass in the production of biofuel and cellulose-based products. In the present study, the agricultural residues such as paddy straw, sugarcane bagasse, and coconut husk were used as substrates for the biodegradation by Aspergillus nomius (MN700028) and Trichoderma harzianum (MN700029) isolated from gut of the termite, Odontotermes obesus and fungus comb in the termite mound, respectively. The influence of varying concentrations of different carbon sources, pH, and temperature on ligninolytic enzyme production was examined under laboratory conditions. The highest activities of manganese peroxidase (0.24 U/mL), lignin peroxidase (10.38 U/mL) and laccase (0.05 U/mL) were observed under studied conditions. Fungal pretreatment of lignocellulosic biomass for 45 days showed that A. nomius and T. harzianum degraded 84.4% and 81.66% of hemicelluloses, 8.16% and 93.75% of cellulose, and 52.59% and 65% of lignin, respectively. The interaction of pH, temperature, and different carbon sources with fungal biomass and enzyme production was found significant (p ≤ 0.05). SEM analysis indicated alterations in the microstructures of degraded lignocellulosic substrates. A. nomius and T. harzianum were highly efficient in ligninolytic enzymes production and in vitro digestibility of agricultural residues. The study reports the production of laccase by A. nomius isolated from termite gut for the first time. The fungal isolates A. nomius and T. harzianum posses potential for ligninocellulosic waste degradation.
Collapse
Affiliation(s)
- Velayuthan Sijinamanoj
- PG and Research Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India
| | - Thangavelu Muthukumar
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Raji Muthuraja
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kathirvel Rayappan
- Department of Zoology, Sri Vidya Mandir Arts and Science College, Krishnagiri, 636 902, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Kulandaivel Saminathan
- Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Palanisamy Kathireswari
- PG and Research Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India.
| |
Collapse
|
29
|
Ahsan Z, Kalsoom U, Bhatti HN, Aftab K, Khalid N, Bilal M. Enzyme-assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation. J Basic Microbiol 2021; 61:960-981. [PMID: 34608659 DOI: 10.1002/jobm.202100218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Environmental protection from emerging pollutants has become a significant challenge for mankind as an increasing number of contaminants, including synthetic dyes and polycyclic aromatic hydrocarbons (PAHs), represent a serious risk to ecological and environmental balance. Most synthetic dyes have complex aromatic structures and are resistant to degrade by classical approaches, such as physical and chemical processes, including adsorption, chemical coagulation, flocculation, ion exchange, membrane separation, froth flotation, and reverse osmosis. Enzymes-assisted catalytic transformation of pollutants has become a potential alternative to classical methods because of their ability to react with complex compounds, a quick degradation rate, and producing less harmful by-products. Plant peroxidases, and microbial laccase and lignin-degrading peroxidases (manganese and lignin peroxidase) have gained significant attention for treating aromatic waste due to their capability of oxidizing and detoxifying a wide range of recalcitrant xenobiotics, including PAHs and synthetic dyes. Peroxidases being efficient biocatalysts detoxify an array of toxic compounds by simple free-radical mechanism resulting in the formation of oxidized and depolymerized products of significantly reduced toxicity. Moreover, it is an ecofriendly and economically favorable approach towards the biodegradation of recalcitrant and toxic industrial waste. Among microbial and plant peroxidases, bacterial enzymes have broad substrate specificity and can transform a wide range of recalcitrant substrates. Ligninolytic enzymes oxidize the aromatic ring into quinones and acids by producing free hydroxyl radicals instead of dihydrodiols and mineralize aromatic hydrocarbon in combination with cytochrome P450, monooxygenases, and epoxide hydrolases. In the review, an attempt has been made to provide detailed knowledge about the availability of inexpensive peroxidases sources, their mechanism of action, and degradation potential. The present review summarizes the exploitation of peroxidases from plants, bacteria, and fungus (manganese peroxidase, lignin peroxidase, and laccases) for detoxification and degradation of textile dyes as well as PAHs. Conclusively, peroxidases have great potential to react with almost all classes of synthetic dyes and most PAHs due to broad substrate specificity and transformed them into less harmful metabolites.
Collapse
Affiliation(s)
- Zainab Ahsan
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Haq N Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Kiran Aftab
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nasira Khalid
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
30
|
Textile Dye Biodecolorization by Manganese Peroxidase: A Review. Molecules 2021; 26:molecules26154403. [PMID: 34361556 PMCID: PMC8348190 DOI: 10.3390/molecules26154403] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022] Open
Abstract
Wastewater emissions from textile factories cause serious environmental problems. Manganese peroxidase (MnP) is an oxidoreductase with ligninolytic activity and is a promising biocatalyst for the biodegradation of hazardous environmental contaminants, and especially for dye wastewater decolorization. This article first summarizes the origin, crystal structure, and catalytic cycle of MnP, and then reviews the recent literature on its application to dye wastewater decolorization. In addition, the application of new technologies such as enzyme immobilization and genetic engineering that could improve the stability, durability, adaptability, and operating costs of the enzyme are highlighted. Finally, we discuss and propose future strategies to improve the performance of MnP-assisted dye decolorization in industrial applications.
Collapse
|
31
|
Dahdouh A, Boucherba N, Bouacem K, Mechri S, Amirouche A, Aksas A, Jaouadi B, Kati DE. A new peroxidase from the roots of the Algerian white turnip (Brassica rapa, variety rapa): extraction, purification, characterisation, and antioxidant potential. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1953485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Amel Dahdouh
- Laboratoire de Biochimie Appliquée (LBA), Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia, Algeria
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia, Algeria
| | - Khelifa Bouacem
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM), Equipe de Microbiologie, Faculté des Sciences Biologiques (FSB), Université des Sciences et de la Technologie Houari Boumediene (USTHB), Alger, Algeria
| | - Sondes Mechri
- Laboratoire de Biotechnologie Microbienne, Enzymatique et de Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisia
| | - Adel Amirouche
- Laboratoire de Biochimie Appliquée (LBA), Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia, Algeria
| | - Ali Aksas
- Laboratoire de Biotechnologies Végétales et Ethnobotanique (LBVE), Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia, Algeria
| | - Bassem Jaouadi
- Laboratoire de Biotechnologie Microbienne, Enzymatique et de Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisia
| | - Djamel Edine Kati
- Laboratoire de Biochimie Appliquée (LBA), Faculté des Sciences de la Nature et de la Vie (FSNV), Université de Bejaia, Bejaia, Algeria
| |
Collapse
|
32
|
Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146132. [PMID: 33714829 DOI: 10.1016/j.scitotenv.2021.146132] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Environmental problems resultant from organic pollutants are a major current challenge for modern societies. White rot fungi (WRF) are well known for their extensive organic compound degradation abilities. The unique oxidative and extracellular ligninolytic systems of WRF that exhibit low substrate specificity, enable them to display a considerable ability to transform or degrade different environmental contaminants. In recent decades, WRF and their ligninolytic enzymes have been widely applied in the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds (PhACs), endocrine disruptor compounds (EDCs), pesticides, synthetic dyes, and other environmental pollutants, wherein promising results have been achieved. This review focuses on advances in WRF-based bioremediation of organic pollutants over the last 10 years. We comprehensively document the application of WRF and their lignocellulolytic enzymes for removing organic pollutants. Moreover, potential problems and intriguing observations that are worthy of additional research attention are highlighted. Lastly, we discuss trends in WRF-remediation system development and avenues that should be considered to advance research in the field.
Collapse
Affiliation(s)
- Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Fangfang Fan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
34
|
Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146255] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural dyes have been used from ancient times for multiple purposes, most importantly in the field of textile dying. The increasing demand and excessive costs of natural dye extraction engendered the discovery of synthetic dyes from petrochemical compounds. Nowadays, they are dominating the textile market, with nearly 8 × 105 tons produced per year due to their wide range of color pigments and consistent coloration. Textile industries consume huge amounts of water in the dyeing processes, making it hard to treat the enormous quantities of this hazardous wastewater. Thus, they have harmful impacts when discharged in non-treated or partially treated forms in the environment (air, soil, plants and water), causing several human diseases. In the present work we focused on synthetic dyes. We started by studying their classification which depended on the nature of the manufactured fiber (cellulose, protein and synthetic fiber dyes). Then, we mentioned the characteristics of synthetic dyes, however, we focused more on their negative impacts on the ecosystem (soil, plants, water and air) and on humans. Lastly, we discussed the applied physical, chemical and biological strategies solely or in combination for textile dye wastewater treatments. Additionally, we described the newly established nanotechnology which achieves complete discharge decontamination.
Collapse
|
35
|
Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021; 6:153-162. [PMID: 34278013 PMCID: PMC8260767 DOI: 10.1016/j.synbio.2021.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
Collapse
|
36
|
Bouacem K, Allala F, Zaraî Jaouadi N, Hamdi S, Mechri S, Ighilahriz K, Rekik H, Hacene H, Bouanane-Darenfed A, Jaouadi B. A novel peroxidase from white-rot Agaricomycetes fungus Phlebia radiata strain KB-DZ15: Its purification, characterisation, and potential application for dye-decolorisation and lignin-biodegradation. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1939315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Khelifa Bouacem
- Department of Biochemistry and Microbiology, Faculty of Biological and Agricultural Sciences (FBAS), University of Mouloud Mammeri of Tizi-Ouzou (UMMTO), Tizi-Ouzou, Algeria
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FBS), University of Sciences and Technology of Houari Boumediene (USTHB), Algiers, Algeria
| | - Fawzi Allala
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FBS), University of Sciences and Technology of Houari Boumediene (USTHB), Algiers, Algeria
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Sondes Hamdi
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Sondes Mechri
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Kahina Ighilahriz
- Central Directorate of Research and Development (CDRD), SONATRACH, Boumerdès, Algeria
| | - Hatem Rekik
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Hocine Hacene
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FBS), University of Sciences and Technology of Houari Boumediene (USTHB), Algiers, Algeria
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FBS), University of Sciences and Technology of Houari Boumediene (USTHB), Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
37
|
Mejía-Otálvaro F, Merino-Restrepo A, Hormaza-Anaguano A. Evaluation of a Trametes pubescens laccase concentrated extract on allura red AC decolorization without the addition of synthetic mediators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112117. [PMID: 33609979 DOI: 10.1016/j.jenvman.2021.112117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Synthetic dye bioremediation is a topic of great importance since these pollutants possess toxic effects, and huge quantities of them are being discharged into water bodies. Ligninolytic enzyme treatment stands out for being a cost-effective methodology, capable of obtaining high decolorization levels. In this work, a laccase enzyme treatment was evaluated to effectively perform a cycle of dye bioremediation. Furthermore, a dye decolorization improvement was also assessed through laccase immobilization. Particularly, a Trametes pubescens enzyme extract was concentrated, immobilized onto calcium alginate beads, and characterized to assess its dye decolorization potential. Ammonium sulfate precipitation and vacuum evaporation were evaluated to concentrate the crude extract and to decolorize allura red AC. Both treatments reached a high enzyme yield recovery (>90%), but only the vacuum-evaporated extract achieved a high allura red AC decolorization level after 16 h of contact time. This suggested that essential compounds for allura red AC decolorization were present in the crude extract, implying that neither a complete laccase purification process nor an addition of synthetic mediators are necessary. Under optimized immobilization conditions, 94.6% immobilization efficiency and 49.8% activity recovery were obtained with 0:1 alginate:enzyme (v/v), 100 mM CaCl2, and 5.0% w/v sodium alginate. Furthermore, by immobilizing the laccase concentrated extract, both the pH and temperature stabilities were improved. The decolorization of allura red AC by free and immobilized laccase was 68.4% and 4.6%, respectively, showing that although the enzyme stability was improved, dye decolorization was negatively affected. Thus, an efficient allura red AC decolorization was obtained with concentrated-free laccase by a feasible and low-cost methodology.
Collapse
Affiliation(s)
- Felipe Mejía-Otálvaro
- Faculty of Science, Universidad Nacional de Colombia, Sede Medellín, 050034, Medellín, Colombia.
| | - Andrés Merino-Restrepo
- Biorefining Conversions and Fermentation Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G 2P5, Edmonton, AB, Canada.
| | | |
Collapse
|
38
|
Chen C, Li Q, Fu R, Wang J, Deng G, Chen X, Lu D. Comparative mitochondrial genome analysis reveals intron dynamics and gene rearrangements in two Trametes species. Sci Rep 2021; 11:2569. [PMID: 33510299 PMCID: PMC7843977 DOI: 10.1038/s41598-021-82040-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Trametes species are efficient wood decomposers that are widespread throughout the world. Mitogenomes have been widely used to understand the phylogeny and evolution of fungi. Up to now, two mitogenomes from the Trametes genus have been revealed. In the present study, the complete mitogenomes of two novel Trametes species, Trametes versicolor and T. coccinea, were assembled and compared with other Polyporales mitogenomes. Both species contained circular DNA molecules, with sizes of 67,318 bp and 99,976 bp, respectively. Comparative mitogenomic analysis indicated that the gene number, length and base composition varied between the four Trametes mitogenomes we tested. In addition, all of the core protein coding genes in Trametes species were identified and subjected to purifying selection. The mitogenome of T. coccinea contained the largest number of introns among the four Trametes species tested, and introns were considered the main factors contributing to size variations of Polyporales. Several novel introns were detected in the Trametes species we assembled, and introns identified in Polyporales were found to undergo frequent loss/gain events. Large-scale gene rearrangements were detected between closely related Trametes species, including gene inversions, insertions, and migrations. A well-supported phylogenetic tree for 77 Basidiomycetes was obtained based on the combined mitochondrial gene set using 2 phylogenetic inference methods. The results showed that mitochondrial genes are effective molecular markers for understanding the phylogeny of Basidiomycetes. This study is the first to report the mitogenome rearrangement and intron dynamics of Trametes species, which shed light on the evolution of Trametes and other related species.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, People's Republic of China
| | - Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Guangmin Deng
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China
| | - Xiaojuan Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China.
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
39
|
Shindhal T, Rakholiya P, Varjani S, Pandey A, Ngo HH, Guo W, Ng HY, Taherzadeh MJ. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2020; 12:70-87. [PMID: 33356799 PMCID: PMC8806354 DOI: 10.1080/21655979.2020.1863034] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Rapid industrialization has provided comforts to mankind but has also impacted the environment harmfully. There has been severe increase in the pollution due to several industries, in particular due to dye industry, which generate huge quantities of wastewater containing hazardous chemicals. Although tremendous developments have taken place for the treatment and management of such wastewater through chemical or biological processes, there is an emerging shift in the approach, with focus shifting on resource recovery from such wastewater and also their management in sustainable manner. This review article aims to present and discuss the most advanced and state-of-art technical and scientific developments about the treatment of dye industry wastewater, which include advanced oxidation process, membrane filtration technique, microbial technologies, bio-electrochemical degradation, photocatalytic degradation, etc. Among these technologies, microbial degradation seems highly promising for resource recovery and sustainability and has been discussed in detail as a promising approach. This paper also covers the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Toral Shindhal
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India.,Biotechnology Department, Kadi Sarva Vishwavidyalaya , Gandhinagar, India
| | - Parita Rakholiya
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India.,Biotechnology Department, Kadi Sarva Vishwavidyalaya , Gandhinagar, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India
| | - Ashok Pandey
- Centre of Innovation and Translation Research, CSIR-Indian Institute of Toxicology Research , Lucknow, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney , Sydney, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney , Sydney, Australia
| | - How Yong Ng
- Department of Civil & Environmental Engineering, National University of Singapore, Environmental Research Institute , Singapore, Singapore
| | | |
Collapse
|
40
|
Sosa-Martínez JD, Balagurusamy N, Montañez J, Peralta RA, Moreira RDFPM, Bracht A, Peralta RM, Morales-Oyervides L. Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123254. [PMID: 32947692 DOI: 10.1016/j.jhazmat.2020.123254] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to provide information that contributes to establishing environmental-friendly methods for synthetic dyes' degradation. The potential decolorization capacity of the crude enzymatic extract produced by Phanerochaete chrysosporium CDBB 686 using corncob as a substrate was evaluated on seven different dyes. Critical variables affecting the in-vitro decolorization process were further evaluated and results were compared with an in-vivo decolorization system. Decolorization with enzymatic extracts presented advantages over the in-vivo system (higher or similar decolorization within a shorter period). Under improved in-vitro process conditions, the dyes with higher decolorization were: Congo red (41.84 %), Poly R-478 (56.86 %), Methyl green (69.79 %). Attempts were made to confirm the transformation of the dyes after the in-vitro process as well as to establish a molecular basis for interpreting changes in toxicity along with the degradation process. In-vitro degradation products of Methyl green presented a toxicity reduction compared with the original dye; however, increased toxicity was found for Congo red degradation products when compared with the original dyes. Thus, for future applications, it is crucial to evaluate the mechanisms of biodegradation of each target synthetic dye as well as the toxicity of the products obtained after enzymatic oxidation.
Collapse
Affiliation(s)
- Jazel Doménica Sosa-Martínez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, LibramientoTorreón-Matamoros, Torreón, Coahuila, 27000, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | | | | | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná, 87020, Brazil
| | - Rosane Marina Peralta
- Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná, 87020, Brazil
| | - Lourdes Morales-Oyervides
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
41
|
Chauhan AK, Choudhury B. Suitability of organic solvent and cholinium based ionic liquid activated novel lignolytic enzymes of H. aswanensis for enhanced Kalson lignin degradation. Int J Biol Macromol 2020; 165:107-117. [DOI: 10.1016/j.ijbiomac.2020.09.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022]
|
42
|
Hybrid Heme Peroxidases from Rice Blast Fungus Magnaporthe oryzae Involved in Defence against Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9080655. [PMID: 32718101 PMCID: PMC7463560 DOI: 10.3390/antiox9080655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Hybrid B heme peroxidases are recently discovered unique oxidoreductases present solely in the fungal kingdom. We have investigated two typical representatives from Magnaporthe oryzae—one of the most dangerous phytopathogens known as a causal agent of the rice blast disease. First, we focused on native expression of two detected hyBpox paralogs by the means of reverse-transcription quantitative real-time PCR. Our results indicate a 7-fold induction of the MohyBpox1 transcript in a medium with H2O2 and a 3-fold induction in a medium with peroxyacetic acid. For the MohyBpox2 paralog the induction patterns were up to 12-fold and 6.7-fold, respectively. We have successfully expressed the shorter gene, MohyBpox1, heterologously in Pichia pastoris for detailed characterization. Observed biochemical and biophysical properties of the highly purified protein reveal that a typical HyBPOX is significantly different from previously investigated APx-CcP hybrids. This newly discovered secretory peroxidase reveals a Soret maximum at 407 nm, Q bands at 532 and 568 nm, CT band at 625 nm and a purity number of 1.48. Electron paramagnetic resonance (EPR) analysis suggests a mixture of high and low spin species in the ferric state dependent on calcium contents. Steady-state kinetic data reveal the highest peroxidase activity with ABTS, 5-aminosalycilate and efficient oxidation of tyrosine. MoHyBPOX1 as a fusion protein consists of two domains. The longer conserved N-terminal peroxidase domain is connected with a shorter C-terminal domain containing a carbohydrate binding motif of type CBM21. We demonstrate the capacity of MoHyBPOX1 to bind soluble starch efficiently. Potential involvement of hybrid peroxidases in the pathogenicity of M. oryzae is discussed.
Collapse
|
43
|
Morsi R, Bilal M, Iqbal HMN, Ashraf SS. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136572. [PMID: 31986384 DOI: 10.1016/j.scitotenv.2020.136572] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 02/08/2023]
Abstract
Various organic pollutants so-called emerging pollutants (EPs), including active residues from pharmaceuticals, pesticides, surfactants, hormones, and personal care products, are increasingly being detected in numerous environmental matrices including water. The persistence of these EPs can cause adverse ecological and human health effects even at very small concentrations in the range of micrograms per liter or lower, hence called micropollutants (MPs). The existence of EPs/MPs tends to be challenging to mitigate from the environment effectively. Unfortunately, most of them are not removed during the present-day treatment plants. So far, a range of treatment processes and degradation methods have been introduced and deployed against various EPs and/or MPs, such as ultrafiltration, nanofiltration, advanced oxidation processes (AOPs) and enzyme-based treatments coupled with membrane filtrations. To further strengthen the treatment processes and to overcome the EPs/MPs effective removal dilemma, numerous studies have revealed the applicability and notable biocatalytic potentialities of laccases and peroxidases to degrade different classes of organic pollutants. Exquisite selectivity and unique catalytic properties make these enzymes powerful biocatalytic candidates for bio-transforming an array of toxic contaminants to harmless entities. This review focuses on the use of laccases and peroxidases, such as soybean peroxidase (SBP), horseradish peroxidase (HRP), lignin peroxidase (LiP), manganese peroxidase (MnP), and chloroperoxidase (CPO) as a greener oxidation route towards efficient and effective removal or degradation of EPs/MPs.
Collapse
Affiliation(s)
- Rana Morsi
- Department of Chemistry, College of Science, UAE University, Al Ain, United Arab Emirates.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
44
|
Bilal M, Iqbal HMN. Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deconstruct Lignocellulosic Molecules in a Sustainable Manner. Catal Letters 2020; 150:524-543. [DOI: 10.1007/s10562-019-03096-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/29/2019] [Indexed: 02/05/2023]
|
45
|
Biodegradation of synthetic orange G dye by Plearotus sojar-caju with Punica granatum peal as natural mediator. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Yu X, Wei Z, Lu Z, Pei H, Wang H. Activation of lignin by selective oxidation: An emerging strategy for boosting lignin depolymerization to aromatics. BIORESOURCE TECHNOLOGY 2019; 291:121885. [PMID: 31377049 DOI: 10.1016/j.biortech.2019.121885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 05/11/2023]
Abstract
Lignin is the most abundant, renewable aromatic resource on earth and holds great potential for the production of value-added chemicals. The efficient valorization of lignin requires to deal with several formidable challenges, especially to prevent it from re-condensation reactions during its depolymerization. Recently, a strategy involving the activation of lignin side chains by selective oxidation of the benzylic alcohol in β-O-4 linkages to facilitate lignin degradation to aromatic monomers has become very popular. This strategy provides great advantages for lignin selective degradation to high yields of aromatics under mild conditions, but requires an additional pre-oxidation step. The purpose of this review is to provide the latest cutting-edge innovations of this novel approach. Various catalytic systems, including those using chemo-catalytic methods, physio-chemo catalytic methods, and/or bio-catalytic methods, for the oxidative activation of lignin side chains are summarized. By analyzing the current situation of lignin depolymerization, certain promising directions are emphasized.
Collapse
Affiliation(s)
- Xiaona Yu
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ziqing Wei
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Zhixian Lu
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haisheng Pei
- Key Laboratory of Agro-products Postharvest Handing Ministry of Agriculture, Chinese Academy of Agricultural Engineering, Beijjing 100121, China
| | - Hongliang Wang
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|