1
|
Bi C, Li S, Hao J, Gu G, Peng C, Yang S, E T. Effective enhancement of copper selective removal from sodium alginate-based gel adsorbent by dual construction of slit-shaped structure and internal channel. Int J Biol Macromol 2025; 306:141274. [PMID: 39993691 DOI: 10.1016/j.ijbiomac.2025.141274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
The Cu(II) treatment in water environment by adsorption has become a major strategy for water pollution control and water resource protection. In view of the planar configuration characteristics of Cu(II) complex, the construction and optimization of adsorbent's internal structure to achieve improved adsorption performance is still a problem worth exploring. Herein, polyvinyl alcohol (PVA) is introduced into graphene oxide/sodium alginate (GO/SA) gel system to obtain PVA/GO/SA gel material, which not only achieves the construction of slit-shaped structure by self-interlayer stacking for GO nanosheets and its cross-linking with SA, but effectively promotes formation of high cross-linking density internal channels by the introduction of PVA, thus achieving the efficacious and selective Cu(II) removal. Maximum adsorption capacity for PVA/GO/SA can reach 96.81 mg/g, and it also shows excellent selective removal rates in various real water environments. Molecular dynamics simulation is used to explore the key roles of each component of PVA/GO/SA on gel formation, slit-shaped structure and internal channel construction, and adsorption reaction activity, and to validate the efficacy components and adsorption mechanism of PVA/GO/SA in Cu(II) adsorption based on density-functional theory (DFT) and simulation calculations. Our study can provide a new structural design idea for the efficient selective Cu(II) adsorption materials.
Collapse
Affiliation(s)
- Changlong Bi
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Suya Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Jie Hao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Gaoyuan Gu
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
2
|
Liu Y, Shi M, Fang S, Zhang Q, Wu Q, Li N, Lin D. Superoleophobic Hierarchical Honeycomb Hydrogels for Effective Heavy Metal Removal in Crude Oil Emulsion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16187-16201. [PMID: 40000028 DOI: 10.1021/acsami.4c21809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Here, we designed a bioinspired hydrogel surface with underwater superoleophobicity for heavy metal adsorption, effectively addressing the challenge of adsorption site clogging caused by crude oil emulsions. Mimicking the reentrant structures of lotus leaf undersides, silica dioxide (SiO2) nanoparticles were self-assembled on the hydrogel surface, forming a stable hydration layer that imparts unique superoleophobic properties in an aqueous environment. The poly(vinyl alcohol)-sodium alginate-SiO2 capsule (PSSC) exhibited a hierarchical honeycomb pore structure with a nano screen mesh, achieving excellent adsorption capacities for typical cationic heavy metals (Pb2+, Cu2+, Cd2+, and Cr3+) in both aqueous solutions and crude oil emulsions. The optimal pH for heavy metal adsorption was determined to be between 4 and 5, while increasing temperature significantly inhibited the adsorption process. Maximum adsorption capacities of Pb2+, Cd2+, Cu2+, and Cr3+ reached 291.5 mg/g, 278.7 mg/g, 259.4 mg/g, and 171.4 mg/g in crude oil emulsions. Competitive adsorption was observed in multicomponent systems, with Cr3+ being adsorbed preferentially. The adsorption mechanisms were primarily governed by chemical adsorption, physical adsorption, and electrostatic attraction, with functional groups such as -COOH and -OH on the hydrogel surface playing a key role in metal ion binding. This study demonstrates the potential of PSSC as an efficient, cost-effective adsorbent for removing heavy metals from complex matrices, such as wastewater and crude oil emulsions, and highlights its applicability in various environmental remediation scenarios.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Energy and Material Engineering, Shandong Polytechnic College, Jining 272067, China
- Shandong Yida New Materials Co., Ltd, Jining 272067, China
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Mei Shi
- Department of Energy and Material Engineering, Shandong Polytechnic College, Jining 272067, China
- Shandong Yida New Materials Co., Ltd, Jining 272067, China
- The College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Fang
- Department of Energy and Material Engineering, Shandong Polytechnic College, Jining 272067, China
- Shandong Yida New Materials Co., Ltd, Jining 272067, China
- The College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qiongfang Zhang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingtong Wu
- Shandong Huankeyuan Environmental Engineering Co., Ltd, Jinan 250013, China
| | - Nanxin Li
- Shaanxi Province Land Engineering Construction Group Corporation, Xi'an 710064, China
| | - Dichu Lin
- The College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- The Department of Forestation, Forestry Administration, Fuzhou 350026, China
| |
Collapse
|
3
|
Li X, Li S, Peng C, Wang Y, Li Y, Yang S, Tao E. Chitosan-based composite featuring dual cross-linking networks for the removal of aqueous Cr(VI). Carbohydr Polym 2025; 348:122859. [PMID: 39562127 DOI: 10.1016/j.carbpol.2024.122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
To avoid the environmental detriment caused by Cr(VI) waste, this study constructs a dual cross-linking network structure using sodium alginate (SA) and polyvinyl alcohol (PVA). Chitosan (CS) is further introduced through electrostatic attraction and hydrogen bonding and SA/PVA/CS (SPC) composite with porous structure is successfully prepared for the removal of Cr(VI) from wastewater. Batch adsorption experiments show that SPC has excellent adsorption capacity and practical usability with a broad pH applicability range. Under optimal adsorption conditions (pH = 2, t = 150 min, T = 35 °C, m/V = 2 g/L, C0 = 10 mg/L), the Cr(VI) removal rate of SPC achieves 89.2 %. Adsorption kinetics and isotherm models indicate that the adsorption process is primarily multi-layer and chemical adsorption. Additionally, FT-IR and XPS reveal that the adsorption mechanism of SPC for Cr(VI) involves a synergy of electrostatic attraction, reduction, ion exchange and complexation. Density functional theory (DFT) simulations also confirm the dominant role of CS in the Cr(VI) adsorption. In summary, SPC shows great potential for Cr(VI) wastewater treatment.
Collapse
Affiliation(s)
- Xueyan Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Suya Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou 121013, Liaoning, China
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai 264005, Shandong, China.
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - E Tao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
4
|
Yang J, Lou T, Wang X. One-step fabrication of millimeter-scale hollow vesicles with chitosan /DADMAC/ sodium alginate graft copolymer for enhanced anionic dye adsorption. Int J Biol Macromol 2024; 269:132153. [PMID: 38729494 DOI: 10.1016/j.ijbiomac.2024.132153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Hollow vesicles are promising in water treatment due to their unique structure of the membrane and inner cavity. However, the adsorption capacity needs to be improved for targeted pollutants. Herein, millimeter-scale hollow vesicles were prepared with a one-step process of sequential stirring and grafting using chitosan, diallyldimethylammonium chloride, and sodium alginate as raw materials with the purpose of efficient removal of anionic dyes from wastewater. The composite vesicles were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The hollow vesicles showed the structure of the cationic membrane and the inner cavity, facilitating the dye adsorption. The adsorption capacity for the anionic dye Reactive Black 5 reached 698.1 mg/g, more than twice that of the binary composite vesicles without graft. The adsorption kinetics and isotherm data coincided with the pseudo-second-order and Langmuir models, respectively, and the adsorption mechanism was monolayer chemisorption. Moreover, the vesicles worked well in wide ranges of environment pH, temperature, and co-existing pollutants. They also possessed excellent cyclic regeneration performance, in which 93 % of the initial adsorption capacity was maintained after four cycles. These results indicate that the millimeter-scale hollow vesicles exhibit broad application prospects for wastewater purification.
Collapse
Affiliation(s)
- Jinshan Yang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Tao Lou
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Xuejun Wang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Li M, Zhang P, Wang Q, Yu N, Zhang X, Su S. Electrospinning Novel Sodium Alginate/MXene Nanofiber Membranes for Effective Adsorption of Methylene Blue. Polymers (Basel) 2023; 15:polym15092110. [PMID: 37177263 PMCID: PMC10180889 DOI: 10.3390/polym15092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Understanding how to develop highly efficient and robust adsorbents for the removal of organic dyes in wastewater is crucial in the face of the rapid development of industrialization. Herein, d-Ti3C2Tx nanosheets (MXene) were combined with sodium alginate (SA), followed by electrospinning and successive Ca2+-mediated crosslinking, giving rise to a series of SA/MXene nanofiber membranes (NMs). The effects of the MXene content of the NMs on the adsorption performance for methylene blue (MB) were investigated systemically. Under the optimum MXene content of 0.74 wt.%, SA/MXene NMs possessed an MB adsorption capacity of 440 mg/g, which is much higher than SA/MXene beads with the same MXene content, pristine MXene, or electrospinning SA NMs. Furthermore, the optimum SA/MXene NMs showed excellent reusability. After the adsorbent was reused ten times, both the MB adsorption capacity and removal rate could remain at 95% of the levels found in the fresh samples, which indicates that the electrospinning technique has great potential for developing biomass-based adsorbents with high efficiency.
Collapse
Affiliation(s)
- Meng Li
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Pingxiu Zhang
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Qianfang Wang
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Ningya Yu
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Xiaomin Zhang
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Shengpei Su
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
6
|
Saruchi, Kumar V, Bhatt D, El-Serehy HA, Pandey S. Gum katira-silver nanoparticle-based bionanocomposite for the removal of methyl red dye. Front Chem 2023; 10:959104. [PMID: 36688053 PMCID: PMC9856520 DOI: 10.3389/fchem.2022.959104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to synthesize gum katira-silver nanoparticle-based bionanocomposite. Different characterization techniques were used to analyze the synthesized bionanocomposite, such as Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), and transmission electronic microscopy (TEM). AgNPs were formed and were 6-20 nm in size. Thermo-gravimetric analysis showed that synthesized nanocomposites are more thermally stable than gum katira. All the reaction conditions, such as time, temperature, pH, solvent, amount of nanoparticles, the concentration of the initiator, crosslinker, and monomer were optimized with respect to swelling. The results showed that the highest percentage swelling (Ps) of Gk-cl-poly(AA) was 796%, and 867% of AgNPs were imbibed by Gk-cl-poly(acrylic acid)-AgNPs. Synthesized bionanocomposite was used as an adsorbent material for the adsorption of methyl red (MR) dye. The effects of different reaction conditions were also optimized to attain maximum adsorption of MR dye. The maximum dye adsorption through Gk-cl-poly(AA)-AgNPs bionanocomposite was 95.7%. Diverse kinetic and isotherm models were used to study the adsorption data. The R 2 value was established as 0.987 and k2 was .02671. The greater R 2 value of second-order kinetics over first-order kinetics suggested that MR adsorption by nanocomposite is best explained by pseudo-second-order kinetics, indicating that dye adsorption occurred through chemisorption. The R 2 value was determined to be .9954. The correlation coefficient values of Gk-cl-poly(AA)-AgNPs were best fitted by the Freundlich adsorption isotherm. Overall, synthesized bionanocomposite is a proficient material for removing of MR dye from wastewater.
Collapse
Affiliation(s)
- Saruchi
- Department of Biotechnology, CT Group of Institutions, CT Institute of Pharmaceutical Sciences (CTIPS), Jalandhar, Punjab, India
| | - Vaneet Kumar
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Diksha Bhatt
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
7
|
The influence of graphene oxide content on adsorption of PVA/SA composite gel spheres. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Ali I, Wan P, Raza S, Peng C, Tan X, Sun H, Li J. Development of novel MOF-mixed matrix three-dimensional membrane capsules for eradicating potentially toxic metals from water and real electroplating wastewater. ENVIRONMENTAL RESEARCH 2022; 215:113945. [PMID: 36027965 DOI: 10.1016/j.envres.2022.113945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The stability and applicability of UiO-66-(NH2)2 metal-organic framework (MOF) nanoparticles (NPs) were successfully improved in this study by incorporating them into alginate biopolymer during the manifestation of crosslinking agents-calcium chloride and glutaraldehyde-via a simple, environment-friendly, and facile approach to eradicate potentially toxic metals (PTMs) such as Cr6+, Cr3+, Cu2+, and Cd2+ from water and real electroplating wastewater. Hydrophilic functional groups (i.e., -OH, -COOH, and -NH2) are imperative in the smooth loading of UiO-66-(NH2)2 MOF- NPs into three-dimensional (3-D) membrane capsules (MCs). The X-ray photoelectron spectroscopy (XPS) results suggested that UiO-66-(NH2)2 MOF was effectively bonded in/on the capsule via electrostatic crosslinking between -H3N+ and -COO-. Scanning electron microscopy results revealed a porous honeycomb configuration of the 3-D SGMMCs (S: sodium alginate, G: glutaraldehyde, M: MOF NPs, and MCs: membrane capsules). The maximum monolayer absorption capacities for Cr6+, Cr3+, Cu2+, and Cd2+ were 495, 975, 1295, and 1350 mg/g, respectively. The results of Fourier transform infrared spectroscopy and XPS analyses showed that electrostatic attraction and ion exchange were the main processes for PTM removal used by the as-developed 3-D SGMMCs. The as-developed 3-D SGMMCs exhibited outstanding selectivity for removing the targeted PTMs under the specified pH/conditions and maintained >80% removal efficiency for up to six consecutive treatment cycles. Notably, > 60% removal efficiencies for Cr6+ and Cu2+ were observed when treating real electroplating wastewater. Therefore, the as-developed 3-D SGMMCs can be used as an exceptional multifunctional sorbent to remove and recover PTMs from real electroplating wastewater.
Collapse
Affiliation(s)
- Imran Ali
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen, 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen, 518001, China
| | - Saleem Raza
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Changsheng Peng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China
| | - Huibin Sun
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Duan R, Lv X, Yan W, Zhou Y, Gao C. Fabrication of high boron removal reverse osmosis membrane with broad industrial application prospect by introducing sulfonate groups through a polyvinyl alcohol coating. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Zou D, Zhou Y, Yan W, Zhou Y, Gao C. Boric acid-loosened polyvinyl alcohol/glutaraldehyde membrane with high flux and selectivity for monovalent/divalent salt separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sultan M, Hafez OM, Saleh MA. Quality assessment of lemon (Citrus aurantifolia, swingle) coated with self-healed multilayer films based on chitosan/carboxymethyl cellulose under cold storage conditions. Int J Biol Macromol 2022; 200:12-24. [PMID: 34973265 DOI: 10.1016/j.ijbiomac.2021.12.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 12/30/2022]
Abstract
The polyelectrolyte multilayer self-healing coating film of chitosan and carboxymethyl cellulose (PEM-SH) tended to maintain high sensory quality and control physiological and pathological decay of lemon fruits under cold storage. The PEM-SH film was characterized by ATR-IR, XRD, X-ray photoelectron spectroscopy, SEM analysis, swelling ratio, self-healing, and mechanical characteristics. The 3-layered film (3L) exhibited the optimum barrier properties; WVP: 3.32 ± 0.06 g. mm. k Pa-1.h-1.m-2 and GTR: 0.256 ± 0.032 cc.M-2.day-1. The moisture sorption isotherm data were fitted with BET, GAB, and Peleg models and three models showed applicability. The coated fruits exhibit superior features of fruit quality such as reduced weight loss %, respiration rate, and decay symptoms appearance. The 3L-coated fruit showed the lower pectinase enzyme activity (0.689 Ug-1 FW) up to 60 days. As well as, increased total soluble solids, keeping vitamin C of loss and decreasing percentage acidity of juice up to 60 days.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza P.O. 12622, Egypt
| | - Omaima M Hafez
- Pomology Departments, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza P.O. 12622, Egypt
| | - Malaka A Saleh
- Pomology Departments, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza P.O. 12622, Egypt
| |
Collapse
|
12
|
Guo Z, Yang R, Yang F, Sun L, Li Y, Xu J. Fabrication of polyethylenimine functionalized magnetic cellulose nanofibers for the sorption of Ni(II), Cu(II) and Cd(II) in single-component and multi-component systems. Int J Biol Macromol 2021; 184:68-78. [PMID: 34119549 DOI: 10.1016/j.ijbiomac.2021.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023]
Abstract
Novel polyethyleneimine functionalized cellulose nanofiber magnetic composites (PEI-CNFs@Fe3O4) were prepared using banana peels as the raw materials for the sorption of Ni(II), Cu(II) and Cd(II) in single-component and multi-component systems. The batch experiments, spectral analyses and model fittings were used to reveal the sorption properties. The sorption of Ni(II), Cu(II) and Cd(II) on PEI-CNFs@Fe3O4 all conformed to the Langmuir isotherm and pseudo-second-order kinetic models. And the maximum sorption capacities of PEI-CNFs@Fe3O4 towards Ni(II), Cu(II) and Cd(II) were 134.38, 93.71 and 173.56 mg g-1, respectively. The main sorption mechanism of Ni(II), Cu(II) and Cd(II) on PEI-CNFs@Fe3O4 is the strong surface complexation of the amino, carboxyl and hydroxyl groups with Ni(II), Cu(II) and Cd(II) ions. Especially, the introduction of PEI contributed to the improvement in the sorption capacities of PEI-CNFs@Fe3O4 towards the heavy metals. Besides, the size of the ionic radius and the strength of the surface complexing ability with PEI-CNFs@Fe3O4 are the reasons for the difference in the sorption capacities of Ni(II), Cu(II) and Cd(II) (Cd(II) > Ni(II) > Cu(II)). In conclusion, PEI-CNFs@Fe3O4 has shown the advantages of low cost, simple preparation, easy magnetic separation, environmental friendliness and high sorption capacity, thus having a broad application prospect in the treatment of multi-heavy metals polluted water.
Collapse
Affiliation(s)
- Zhiqiang Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009 Hefei, PR China.
| | - Rongrong Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009 Hefei, PR China
| | - Fanjun Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009 Hefei, PR China
| | - Lei Sun
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009 Hefei, PR China
| | - Yuan Li
- School of Electronic Science and Applied Physics, Hefei University of Technology, 230009 Hefei, PR China
| | - Jinzhang Xu
- School of Electrical Engineering and Automation, Hefei University of Technology, 230009 Hefei, PR China.
| |
Collapse
|
13
|
Preparation of millimeter-sized chitosan/carboxymethyl cellulose hollow capsule and its dye adsorption properties. Carbohydr Polym 2020; 244:116481. [DOI: 10.1016/j.carbpol.2020.116481] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023]
|
14
|
Zheng Y, Tang J, Li W, Yu J, Li X, Shi J, Miyazaki K. Control of the pore size of honeycomb polymer film from micrometers to nanometers via substrate-temperature regulation and its application to photovoltaic and heat-resistant polymer films. NANOTECHNOLOGY 2020; 31:015301. [PMID: 31530745 DOI: 10.1088/1361-6528/ab4521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Honeycomb porous polystyrene (PS) films with an aspect ratio of pore depth to pore diameter at approximately 1.0 were fabricated using the breath figure (BF) method. Two modes of water droplet coalescence in the pore growth were observed in real-time by optical microscopy. Pore size significantly increases with the increase in humidity and the decrease in substrate temperature. The porous pattern could emerge even at room temperature under high humidity of 80%. Boiling point and solvent density significantly influence the pore distribution and pore depth. Chloroform and tetrahydrofuran achieve more uniform hexagonal patterns than benzene and dichloromethane. Subsequently, to obtain nanometer porous PS film, the fast-evaporation BF process was designed by regulating the gradient substrate temperature and evaporation time, and porous mesoscopic PS film was obtained. The minimum pore diameter and corresponding pore depth are about 120 nm and 27 nm, respectively. Finally, the fast-evaporation BF process was applied to the honeycomb film formation of photovoltaic polymer poly(3-hexylthiophene) (P3HT), and the heat-resistant polymers polysulfone (PSF) and polyimide (PI).
Collapse
Affiliation(s)
- Yanqiong Zheng
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|