1
|
Panda J, Mishra AK, Mohanta YK, Patowary K, Rauta PR, Mishra B. Exploring Biopolymer for Food and Pharmaceuticals Application in the Circular Bioeconomy: An Agro-Food Waste-to-Wealth Approach. WASTE AND BIOMASS VALORIZATION 2024; 15:5607-5637. [DOI: 10.1007/s12649-024-02452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/28/2024] [Indexed: 01/06/2025]
|
2
|
Koester DL, Gomes LM, Dresch AP, Matsuo TT, Dos Santos DF, Bender JP, Deon VG, de Amorin SG, Quast LB, Pinto VZ. Biodegradable starch foams reinforced by food-chain side streams. Int J Biol Macromol 2024; 275:133386. [PMID: 38914407 DOI: 10.1016/j.ijbiomac.2024.133386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Biodegradable starch foam trays offer an eco-friendly substitute for petroleum-based single-use packaging, notably polystyrene foams. However, they lack flexibility, tensile strength, and water-sensitivity, addressable through lignocellulosic reinforcement. This study aimed to develop biodegradable starch foam trays filled with different food-chain side streams for sustainable alternative packaging. Corncob, soybean straw, cassava peel, araucaria seed hull, yerba mate stalks and yerba mate leaves petiole were collected, dried and ground to <250 μm. The trays were filled with 13 % (w/w) of each food-chain side streams and produced by hot molding. The trays morphology, moisture, water activity (aw), thickness, bulk density, tensile strength, elongation at break, Young's modulus, bending strength, maximum deflection, and sorption isotherms were investigated. Reinforcements slightly increased the foams bulk density, reduced the tensile strength and maximum deflection and while bending strength increased from 0.20 MPa to 1.17-1.80 MPa. The elasticity modulus decreased by adding any filling, that resulted in ductility improvement; however, these packaging have moisture-sensitive material especially for aw higher than 0.52, which drives the use recommendation for dry products storage or shipping/transport. The biodegradable starch foam trays filled with side streams were successfully produced and offer excellent alternative to petroleum-based packaging low-density material with bending strength improved.
Collapse
Affiliation(s)
- Davi Luiz Koester
- Food Engineering, Federal University of Fronteira Sul (UFFS), BR 158 - Km 405, CEP: 85319-899 Laranjeiras do Sul, Paraná, Brazil
| | - Luan Martins Gomes
- Food Engineering, Federal University of Fronteira Sul (UFFS), BR 158 - Km 405, CEP: 85319-899 Laranjeiras do Sul, Paraná, Brazil
| | - Aline Perin Dresch
- Department of Environmental Engineering and Technology, Federal University of Paraná (UFPR), Rua Pioneiro, 2153, CEP: 85950-000 Palotina, Paraná, Brazil
| | - Tayla Tomie Matsuo
- Food Engineering, Federal University of Fronteira Sul (UFFS), BR 158 - Km 405, CEP: 85319-899 Laranjeiras do Sul, Paraná, Brazil
| | - David Fernando Dos Santos
- Food Engineering, Federal University of Fronteira Sul (UFFS), BR 158 - Km 405, CEP: 85319-899 Laranjeiras do Sul, Paraná, Brazil; Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP: 05508-000 São Paulo, São Paulo, Brazil; Food Research Center (FoRC), University of São Paulo (USP), Rua do Lago, 250, CEP: 05508-080 São Paulo, São Paulo, Brazil
| | - João Paulo Bender
- Food Science and Technology Gradutate Program (PPGCTAL), Federal University of Fronteira Sul (UFFS), Rodovia BR 158 - Km 405, CEP: 85301-970 Laranjeiras do Sul, Paraná, Brazil
| | - Vinicius Gonçalves Deon
- Mechanical Engineering, Federal Institute of Santa Catarina (IFSC), Rua Euclides Hack, 1603, CEP: 89820-000 Xanxerê, Santa Catarina, Brazil
| | - Sandra Gomes de Amorin
- Food Science and Technology Gradutate Program (PPGCTAL), Federal University of Fronteira Sul (UFFS), Rodovia BR 158 - Km 405, CEP: 85301-970 Laranjeiras do Sul, Paraná, Brazil
| | - Leda Battestin Quast
- Food Engineering, Federal University of Fronteira Sul (UFFS), BR 158 - Km 405, CEP: 85319-899 Laranjeiras do Sul, Paraná, Brazil; Food Science and Technology Gradutate Program (PPGCTAL), Federal University of Fronteira Sul (UFFS), Rodovia BR 158 - Km 405, CEP: 85301-970 Laranjeiras do Sul, Paraná, Brazil
| | - Vânia Zanella Pinto
- Food Engineering, Federal University of Fronteira Sul (UFFS), BR 158 - Km 405, CEP: 85319-899 Laranjeiras do Sul, Paraná, Brazil; Food Science and Technology Gradutate Program (PPGCTAL), Federal University of Fronteira Sul (UFFS), Rodovia BR 158 - Km 405, CEP: 85301-970 Laranjeiras do Sul, Paraná, Brazil.
| |
Collapse
|
3
|
Liang Z, Xi N, Liu T, Li M, Sang M, Zou C, Chen Z, Yuan G, Pan G, Ma L, Shen Y. A combination of QTL mapping and genome-wide association study revealed the key gene for husk number in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:112. [PMID: 38662228 DOI: 10.1007/s00122-024-04617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
KEY MESSAGE Two key genes Zm00001d021232 and Zm00001d048138 were identified by QTL mapping and GWAS. Additionally, they were verified to be significantly associated with maize husk number (HN) using gene-based association study. As a by-product of maize production, maize husk is an important industrial raw material. Husk layer number (HN) is an important trait that affects the yield of maize husk. However, the genetic mechanism underlying HN remains unclear. Herein, a total of 13 quantitative trait loci (QTL) controlling HN were identified in an IBM Syn 10 DH population across different locations. Among these, three QTL were individually repeatedly detected in at least two environments. Meanwhile, 26 unique single nucleotide polymorphisms (SNPs) were detected to be significantly (p < 2.15 × 10-6) associated with HN in an association pool. Of these SNPs, three were simultaneously detected across multiple environments or environments and best linear unbiased prediction (BLUP). We focused on these environment-stable and population-common genetic loci for excavating the candidate genes responsible for maize HN. Finally, 173 initial candidate genes were identified, of which 22 were involved in both multicellular organism development and single-multicellular organism process and thus confirmed as the candidate genes for HN. Gene-based association analyses revealed that the variants in four genes were significantly (p < 0.01/N) correlated with HN, of which Zm00001d021232 and Zm00001d048138 were highly expressed in husks and early developing ears among different maize tissues. Our study contributes to the understanding of genetic and molecular mechanisms of maize husk yield and industrial development in the future.
Collapse
Affiliation(s)
- Zhenjuan Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Na Xi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minglin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxiang Sang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Schutz GF, de Ávila Gonçalves S, Alves RMV, Vieira RP. A review of starch-based biocomposites reinforced with plant fibers. Int J Biol Macromol 2024; 261:129916. [PMID: 38311134 DOI: 10.1016/j.ijbiomac.2024.129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
Renewable and biodegradable resources have gained increasing attention as promising alternatives to synthetic plastics. Among the diverse raw materials employed in bioplastics production, starch emerges as an attractive, low-cost, and largely available source. However, the inherent properties of starch-based materials often limit their utility across various applications, necessitating strategic modifications to enhance their performance. A common approach to boost these materials involves incorporating natural fillers into biopolymer matrices. Incorporating natural fibers within starch matrices enables the development of biocomposites with improved properties while retaining their renewable and biodegradable characteristics. This review briefly addresses fundamental aspects of starch structure, obtention, and processing, as well as the main pre-treatments of natural fibers and processing methods currently applied to produce starch-based composites. It also highlights the most recent advances in this field, elucidates the effect of the incorporation of fibers on the biocomposite properties, and discusses the critical parameters affecting the synergic combination between starch and fibers.
Collapse
Affiliation(s)
- Guilherme Frey Schutz
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil.
| | - Sayeny de Ávila Gonçalves
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil
| | - Rosa Maria Vercelino Alves
- Instituto de Tecnologia de Alimentos (ITAL), Centro de Tecnologia de Embalagem (CETEA), Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Jumaidin R, Whang LY, Ilyas RA, Hazrati KZ, Hafila KZ, Jamal T, Alia RA. Effect of durian peel fiber on thermal, mechanical, and biodegradation characteristics of thermoplastic cassava starch composites. Int J Biol Macromol 2023; 250:126295. [PMID: 37573912 DOI: 10.1016/j.ijbiomac.2023.126295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
This study is focused on developing and enhancing the properties of durian peel fiber (DPF) reinforced thermoplastic cassava starch (TPCS) composites. The proposed DPF was extracted from agro-waste and incorporated into TPCS with various contents of DPF (10, 20, 30, 40, and 50 wt%) via compression molding. The mechanical and thermal characteristics of the fabricated composites were studied. The thermal properties of the biocomposite were improved with the addition of DPF, as evidenced by an increase in the material's thermal stability and indicated by a higher onset decomposition temperature. The integration of DPF into TPCS improved the biodegradation rate process of the composites. Besides, the results indicated that incorporating DPF in TPCS composites enhanced tensile and flexural properties, with a 40 wt% DPF content exhibited the highest modulus and strength. The tensile and flexural strengths of TPCS/DPF composites were raised significantly from 2.96 to 21.89 MPa and 2.5 to 35.0 MPa, respectively, compared to the control TPCS sample, as DPF increased from 0 to 40 wt%. This finding was consistent with Fourier-Transform Infrared (FT-IR) spectroscopy and scanning electron micrograph (SEM), which showed good interaction between DPF and TPCS matrix. The analysis revealed that DPF at a 40 wt% ratio was the best composition compared to the other ratio. Finally, based on improved results, DPF was identified as a potential resource of green reinforcement for the biodegradable TPCS matrix.
Collapse
Affiliation(s)
- R Jumaidin
- Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
| | - Low Yong Whang
- Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - R A Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - K Z Hazrati
- German-Malaysian Institute, Jalan Ilmiah, Taman Universiti, Kajang 43000, Selangor, Malaysia
| | - K Z Hafila
- German-Malaysian Institute, Jalan Ilmiah, Taman Universiti, Kajang 43000, Selangor, Malaysia
| | - Tarique Jamal
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
| | - R A Alia
- Advanced Materials Research Center, Technology Innovation Institute, P.O. Box: 9639, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Kamaruddin ZH, Jumaidin R, Kamaruddin ZH, Asyraf MRM, Razman MR, Khan T. Effect of Cymbopogan citratus Fibre on Physical and Impact Properties of Thermoplastic Cassava Starch/Palm Wax Composites. Polymers (Basel) 2023; 15:polym15102364. [PMID: 37242939 DOI: 10.3390/polym15102364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Cymbopogan citratus fibre (CCF) is an agricultural waste plant derived from a natural cellulosic source of fibre that can be used in various bio-material applications. This paper beneficially prepared thermoplastic cassava starch/palm wax blends incorporated with Cymbopogan citratus fibre (TCPS/PW/CCF) bio-composites at different CCF concentrations of 0, 10, 20, 30, 40, 50 and 60 wt%. In contrast, palm wax loading remained constant at 5 wt% concentration using the hot moulding compression method. TCPS/PW/CCF bio-composites were characterised in the present paper via their physical and impact properties. The addition of CCF significantly improved impact strength by 50.65% until 50 wt% CCF loading. Furthermore, it was observed that the inclusion of CCF resulted in a little decrement in biocomposite solubility compared to neat TPCS/PW biocomposite from 28.68% to 16.76%. Water absorption showed higher water resistance in the composites incorporating 60 wt.% fibre loading. The TPCS/PW/CCF biocomposites with different fibre contents had 11.04-5.65% moisture content, which was lower than the control biocomposite. The thickness of all samples decreased gradually with increasing fibre content. Overall, these findings provide evidence that CCF waste can be utilised as a high-quality filler in biocomposites due to its diverse characteristics, including improving the properties of biocomposites and strengthening their structural integrity.
Collapse
Affiliation(s)
- Zatil Hafila Kamaruddin
- Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
- German-Malaysian Institute, Jalan Ilmiah Taman Universiti, Kajang 43000, Selangor, Malaysia
| | - Ridhwan Jumaidin
- Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
| | | | - Muhammad Rizal Muhammad Asyraf
- Engineering Design Research Group (EDRG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| | - Tabrej Khan
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
7
|
Hazrol M, Sapuan S, Ilyas R, Zainudin E, Zuhri M, Abdul N. Effect of corn husk fibre loading on thermal and biodegradable properties of kenaf/cornhusk fibre reinforced corn starch-based hybrid composites. Heliyon 2023; 9:e15153. [PMID: 37095902 PMCID: PMC10121401 DOI: 10.1016/j.heliyon.2023.e15153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
This paper documents the thermal and biodegradation behaviour of kenaf/cornhusk fiber reinforced corn starch-based hybrid composites film (CS/K-CH) produced by solution casting method. To develop both components as biodegradable hybrid composite, this research used corn starch as matrix, kenaf fiber and cornhusk fibre as a filler. Changes in physical structure and weight from the soil burial test were measured using Mettler Toledo digital balance ME. Films produced from physically blended corn starch reinforced kenaf biocomposites films (CS/K) biocomposite film had faster biodegradation and lost 96.18% of weight within 10 days compared with corn starch hybrid composites that only lost 83.82% of total weight. It was observed that the control film, CS/K biocomposite film was completely degraded after 10 days, meanwhile it took 12 days for hybrid composite films to be fully degrade. The thermal properties such as TGA and DTG were also measured. Addition of corn husk fiber significantly improve the film's thermal properties. Glass transition temperatures of corn starch hybrid films were significantly lowered when cornhusk compositions were increased from 0.2% wt to 0.8% wt. Importantly, the current work has demonstrated that hybrid films made of corn starch can be a suitable biodegradable material for substitute synthetic plastic.
Collapse
Affiliation(s)
- M.D. Hazrol
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S.M. Sapuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R.A. Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
- Centre for Advance Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - E.S. Zainudin
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M.Y.M. Zuhri
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - N.I. Abdul
- Advanced Lightning Power and Energy Research (ALPER), Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Matheus JRV, Dalsasso RR, Rebelatto EA, Andrade KS, Andrade LMD, Andrade CJD, Monteiro AR, Fai AEC. Biopolymers as green-based food packaging materials: A focus on modified and unmodified starch-based films. Compr Rev Food Sci Food Saf 2023; 22:1148-1183. [PMID: 36710406 DOI: 10.1111/1541-4337.13107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023]
Abstract
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Raul Remor Dalsasso
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Evertan Antonio Rebelatto
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Kátia Suzana Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Mohammed AABA, Hasan Z, Omran AAB, Kumar V, Elfaghi AM, Ilyas RA, Sapuan SM. Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications. Polymers (Basel) 2022; 14:polym14204396. [PMID: 36297977 PMCID: PMC9607144 DOI: 10.3390/polym14204396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Biocomposite materials have a significant function in saving the environment by replacing artificial plastic materials with natural substances. They have been enrolled in many applications, such as housing, automotive engine components, aerospace and military products, electronic and circuit board components, and oil and gas equipment. Therefore, continuous studies have been employed to improve their mechanical, thermal, physical properties. In this research, we conduct a comprehensive review about corn fiber and corn starch-based biocomposite. The results gained from previous studies were compared and discussed. Firstly, the chemical, thermal, and mechanical properties of cornstarch-based composite were discussed. Then, the effects of various types of plasticizers on the flexibility of the cornstarch-based composite were addressed. The effects of chemical treatments on the properties of biocomposite using different cross-linking agents were discussed. The corn fiber surface treatment to enhance interfacial adhesion between natural fiber and polymeric matrix also were addressed. Finally, morphological characterization, crystallinity degree, and measurement of vapor permeability, degradation, and uptake of water were discussed. The mechanical, thermal, and water resistance properties of corn starch and fibers-based biopolymers show a significant improvement through plasticizing, chemical treatment, grafting, and cross-linker agent procedures, which expands their potential applications.
Collapse
Affiliation(s)
| | - Zaimah Hasan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Malaysia
- Correspondence: (Z.H.); (A.A.B.O.)
| | - Abdoulhdi A. Borhana Omran
- Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Sohar University, Sohar P C-311, Oman
- Department of Mechanical Engineering, College of Engineering Science & Technology, Sebha University, Sabha 00218, Libya
- Correspondence: (Z.H.); (A.A.B.O.)
| | - V.Vinod Kumar
- Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Sohar University, Sohar P C-311, Oman
| | - Abdulhafid M. Elfaghi
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia
| | - R. A. Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Center (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
10
|
Tarique J, Sapuan SM, Khalina A, Ilyas RA, Zainudin ES. Thermal, flammability, and antimicrobial properties of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites for food packaging applications. Int J Biol Macromol 2022; 213:1-10. [PMID: 35594940 DOI: 10.1016/j.ijbiomac.2022.05.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Using the solution casting method, a novel biodegradable thermoplastic arrowroot (Maranta arundinacea) starch (TPAS) films containing arrowroot fiber (AF) at different concentrations (0, 2, 4, 6, 8, and 10 wt%) were developed and characterized in terms of thermal, antibacterial activity, water vapor permeability (WVP), biodegradability, and light transmittance properties. The TPAS/AF-10 biocomposite film revealed a higher degradation temperature (313.02 °C) than other biocomposite films, indicating better thermal stability. Furthermore, increasing AF concentration led to a significant (p < 0.05) reduction in the linear burning rate and WVP of the biocomposite films from 248.9 to 115.2 mm/min and 8.18 × 10-10 ×g. s-1.m-1. Pa-1 to 5.20 × 10-10 ×g. s-1.m-1. Pa-1, respectively. The addition of fibers in the surface structure had a significant impact on remarkable drop in opacity (91.1 to 74.1%). In addition, the incorporation of AF and control film showed an insignificant effect against three pathogenic bacteria, including Staphylococcus aureus (ATCC 43300), Escherichia coli (ATCC 25922), and Bacillus subtilis (B29). The soil burial findings demonstrated that the weight loss of TPAS/AF biocomposite films was significantly higher than TPAS film. Overall, the reinforcement of arrowroot fiber with TPAS film improved the properties of biocomposites for environmentally friendly food packaging applications.
Collapse
Affiliation(s)
- J Tarique
- Advanced Engineering Materials and composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - A Khalina
- Laboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R A Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - E S Zainudin
- Advanced Engineering Materials and composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Development of natural rubber with enhanced oxidative degradability. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Effect of Kenaf Fibre as Reinforcing Fillers in Corn Starch-Based Biocomposite Film. Polymers (Basel) 2022; 14:polym14081590. [PMID: 35458339 PMCID: PMC9029461 DOI: 10.3390/polym14081590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Biocomposite films were prepared using corn starch (CS), sorbitol as a plasticiser, and multi-scale kenaf fibre as reinforcing filler. The microstructure and the physical, tensile, and water barrier properties of corn starch reinforced with kenaf fibre were characterised and investigated. The biocomposite films were developed via the solution casting technique using 10 g of CS with 0 to 8% kenaf fibre as filler treated with 30% (w/w, starch basis) of sorbitol. The increased amount of kenaf fibre introduced contributed to improvements in film thickness, weight, and density. Conversely, slight reductions in the biocomposite films’ moisture content, water absorption, and solubility rating were 9.86–5.88%, 163.13–114.68%, and 38.98–25.17%, respectively. An X-ray diffraction (XRD) test revealed that the films were amorphous and that there was no effect on the crystallinity structure of films with kenaf fibre reinforcement. Fourier transform infrared (FT-IR) and rheological analysis indicated that kenaf fibre could weaken the molecular interaction of the film matrix. Field emission scanning electron microscope (FESEM) revealed the arrangement and uniform distribution of kenaf fibre at 0.2–0.8%. The incorporation of kenaf increased the tensile strength, Young’s modulus, and elongation at break until (6% wt) of fibre. With the kenaf fibre incorporation, the optimal tensile strength, Young’s modulus, and elongation at break of the films reached 17.74 MPa, 1324.74 MPa, and 48.79%, respectively. Overall, the introduction of kenaf fibre as filler enhanced the physical and mechanical properties of CS films.
Collapse
|
13
|
Biocomposite of Cassava Starch-Cymbopogan Citratus Fibre: Mechanical, Thermal and Biodegradation Properties. Polymers (Basel) 2022; 14:polym14030514. [PMID: 35160505 PMCID: PMC8838383 DOI: 10.3390/polym14030514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Increasing environmental awareness and concern have shifted the focus of research and development towards biodegradable materials development. In the current study, Cymbopogan citratus fibre (CCF) were incorporated into thermoplastic cassava starch (TPCS) with various content of CCF (10, 20, 30, 40, 50, 60 wt.%) via compression moulding. The determination of fundamental characteristics of TPCS/CCF biopolymer composites was conducted to assess their potential as biodegradable reinforcements. Characterization of the samples was conducted via Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), as well as mechanical, moisture absorption, and soil burial testings. The findings showed that the improved tensile and flexural features of the TPCS composites with CCF incorporation, with 50 wt.% CCF content yielded the maximum modulus and strength. The thermal properties of the biocomposite demonstrated that CCF addition improved the material’s thermal stability, as shown by a higher-onset decomposition temperature and ash content. Meanwhile, the CCF incorporation into TPCS slowed down the biodegradation of the composites. In term of morphological, homogeneous fibres and matrix dispersion with excellent adhesion was observed in morphological analyses using scanning electron microscopy (SEM), which is crucial for the enhancement of the mechanical performance of biocomposites.
Collapse
|
14
|
Tarique J, Zainudin ES, Sapuan SM, Ilyas RA, Khalina A. Physical, Mechanical, and Morphological Performances of Arrowroot (Maranta arundinacea) Fiber Reinforced Arrowroot Starch Biopolymer Composites. Polymers (Basel) 2022; 14:polym14030388. [PMID: 35160378 PMCID: PMC8838641 DOI: 10.3390/polym14030388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
This research is driven by stringent environmental legislation requiring the consumption and use of environmentally friendly materials. In this context, this paper is concerned with the development and characterization of thermoplastic arrowroot starch (TPAS) based biocomposite films by incorporating arrowroot fiber (AF) (0–10%) into a glycerol plasticized matrix by using the solution casting method. Developed TPAS/AF composite films were investigated, such as physical, morphological (FESEM), tensile, and tear strength characteristics. The tensile and tear strengths of TPAS/AF composites were increased significantly from 4.77 to 15.22 MPa and 0.87 to 1.28 MPa, respectively, as compared to the control TPAS films, which were 2.42 MPa and 0.83 MPa, respectively, while elongation was significantly decreased from 25.57 to 6.21% compared to control TPAS film, which was 46.62%. The findings revealed that after the fiber was reinforced, the mechanical properties were enhanced, and the optimum filler content was 10%. Regardless of fiber loadings, the results of water absorption testing revealed that the composite films immersed in seawater and rainwater absorbed more water than distilled water. Overall, the results of this research focus on providing information on biopolymer composite film and revealing the great potential it has for the food packaging industry.
Collapse
Affiliation(s)
- J. Tarique
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (J.T.); (S.M.S.)
| | - E. S. Zainudin
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (J.T.); (S.M.S.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: ; Tel.: +60-13-7792580
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (J.T.); (S.M.S.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknology Malaysia, Johor Bahru 81310, Malaysia;
- Centre for Advanced Composite Materials (CACM), Universiti Teknology Malaysia, Johor Bahru 81310, Malaysia
| | - A. Khalina
- Laboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
15
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
16
|
Alkali pretreated sugarcane bagasse, rice husk and corn husk wastes as lignocellulosic biosorbents for dyes. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
17
|
Zhang H, Sablani S. Biodegradable packaging reinforced with plant-based food waste and by-products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Sid S, Mor RS, Kishore A, Sharanagat VS. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Characterization of a new natural fiber extracted from Corypha taliera fruit. Sci Rep 2021; 11:7622. [PMID: 33828142 PMCID: PMC8027030 DOI: 10.1038/s41598-021-87128-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
This study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer's equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young's modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.
Collapse
|
20
|
Sari RM, Torres FG, Troncoso OP, De‐la‐Torre GE, Gea S. Analysis and availability of lignocellulosic wastes: Assessments for Indonesia and Peru. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/tqem.21737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Reka M. Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Sumatera Utara Medan Indonesia
| | - Fernando G. Torres
- Department of Mechanical Engineering Pontificia Universidad Católica del Perú Lima Perú
| | - Omar P. Troncoso
- Department of Mechanical Engineering Pontificia Universidad Católica del Perú Lima Perú
| | | | - Saharman Gea
- Department of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Sumatera Utara Medan Indonesia
| |
Collapse
|
21
|
Temirel M, Dabbagh SR, Tasoglu S. Hemp-Based Microfluidics. MICROMACHINES 2021; 12:mi12020182. [PMID: 33673025 PMCID: PMC7917756 DOI: 10.3390/mi12020182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Hemp is a sustainable, recyclable, and high-yield annual crop that can be used to produce textiles, plastics, composites, concrete, fibers, biofuels, bionutrients, and paper. The integration of microfluidic paper-based analytical devices (µPADs) with hemp paper can improve the environmental friendliness and high-throughputness of µPADs. However, there is a lack of sufficient scientific studies exploring the functionality, pros, and cons of hemp as a substrate for µPADs. Herein, we used a desktop pen plotter and commercial markers to pattern hydrophobic barriers on hemp paper, in a single step, in order to characterize the ability of markers to form water-resistant patterns on hemp. In addition, since a higher resolution results in densely packed, cost-effective devices with a minimized need for costly reagents, we examined the smallest and thinnest water-resistant patterns plottable on hemp-based papers. Furthermore, the wicking speed and distance of fluids with different viscosities on Whatman No. 1 and hemp papers were compared. Additionally, the wettability of hemp and Whatman grade 1 paper was compared by measuring their contact angles. Besides, the effects of various channel sizes, as well as the number of branches, on the wicking distance of the channeled hemp paper was studied. The governing equations for the wicking distance on channels with laser-cut and hydrophobic side boundaries are presented and were evaluated with our experimental data, elucidating the applicability of the modified Washburn equation for modeling the wicking distance of fluids on hemp paper-based microfluidic devices. Finally, we validated hemp paper as a substrate for the detection and analysis of the potassium concentration in artificial urine.
Collapse
Affiliation(s)
- Mikail Temirel
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34470, Turkey
- Correspondence:
| |
Collapse
|
22
|
Chen Q, Xiong J, Chen G, Tan T. Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material. Int J Biol Macromol 2020; 158:781-789. [PMID: 32371132 DOI: 10.1016/j.ijbiomac.2020.04.250] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
In this paper, nanocellulose was extracted from agricultural waste corn husks. Transparent hydrophobic membranes containing silica were fabricated through two facile methods including surface coating and internal grafting. The results showed that: the nanocellulose prepared by TEMPO-mediated oxidation and high pressure homogenization not only retained the type and crystal structure of the original cellulose, but also increased the crystallinity to 64.5% and improved the thermal stability. Both surface coating and internal grafting methods had successfully loaded silica onto films. The internal grafting film had a silica content of 10.5%, which was mainly present inside the film. The light transmittance of this film was 84.4% and the surface contact angle to water was 152.6°. The content of silica on the surface coating film was 5.7%, and they were mainly distributed on the surface of the film to form a nano-scale rough surface. The light transmittance of the surface coating film was 87.8% and the surface contact angle to water was 165.7°. Compared to the film prepared by internal grafting method, the nanocellulose film prepared by surface coating method contained less nano silica and had better properties including higher transparency, higher surface roughness and excellent hydrophobic anti-fouling properties.
Collapse
Affiliation(s)
- Qifeng Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China; Shenzhen Xinyichang Technology Co., Ltd, Shenzhen, 518000, China
| | - Jieyi Xiong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Taiyan Tan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
23
|
Preparation and Properties of Cassava Residue Cellulose Nanofibril/Cassava Starch Composite Films. NANOMATERIALS 2020; 10:nano10040755. [PMID: 32326505 PMCID: PMC7221531 DOI: 10.3390/nano10040755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
Because of its non-toxic, pollution-free, and low-cost advantages, environmentally-friendly packaging is receiving widespread attention. However, using simple technology to prepare environmentally-friendly packaging with excellent comprehensive performance is a difficult problem faced by the world. This paper reports a very simple and environmentally-friendly method. The hydroxyl groups of cellulose nanofibrils (CNFs) were modified by introducing malic acid and the silane coupling agent KH-550, and the modified CNF were added to cassava starch as a reinforcing agent to prepare film with excellent mechanical, hydrophobic, and barrier properties. In addition, due to the addition of malic acid and a silane coupling agent, the dispersibility and thermal stability of the modified CNFs became significantly better. By adjusting the order of adding the modifiers, the hydrophobicity of the CNFs and thermal stability were increased by 53.5% and 36.9% ± 2.7%, respectively. At the same time, the addition of modified CNFs increased the tensile strength, hydrophobicity, and water vapor transmission coefficient of the starch-based composite films by 1034%, 129.4%, and 35.95%, respectively. This material can be widely used in the packaging of food, cosmetics, pharmaceuticals, and medical consumables.
Collapse
|
24
|
Mendes JF, Norcino LB, Manrich A, Pinheiro ACM, Oliveira JE, Mattoso LHC. Development, physical‐chemical properties, and photodegradation of pectin film reinforced with malt bagasse fibers by continuous
casting. J Appl Polym Sci 2020. [DOI: 10.1002/app.49178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Laís Bruno Norcino
- Graduate Program in Biomaterials EngineeringFederal University of Lavras Lavras Minas Gerais Brazil
| | - Anny Manrich
- National Laboratory of Nanotechnology for Agriculture (LNNA)Embrapa Instrumentation São Carlos São Paulo Brazil
| | | | | | | |
Collapse
|
25
|
Stasi E, Giuri A, Ferrari F, Armenise V, Colella S, Listorti A, Rizzo A, Ferraris E, Esposito Corcione C. Biodegradable Carbon-based Ashes/Maize Starch Composite Films for Agricultural Applications. Polymers (Basel) 2020; 12:polym12030524. [PMID: 32121560 PMCID: PMC7182920 DOI: 10.3390/polym12030524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this work is the development and characterization of biodegradable thermoplastic recycled carbon ashes/maize starch (TPAS) composite films for agricultural applications. A proper plasticizer, that is, glycerol, was added to a commercial maize starch in an amount of 35 wt.%. Carbon-based ashes were produced by the biomass pyro-gasification plant CMD ECO 20, starting from lignocellulosic wastes. The ashes were added to glycerol and maize native starch at different amounts ranging from 7 wt. % to 21 wt.%. The composite was mixed at 130 °C for 10 min and then molded. The effect of the different amounts of carbon based ashes on the thermal and physical-mechanical properties of the composite was assessed by using several techniques, such as rheology, wide- angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), moisture absorption, degradation and mechanical tests. The presence of the carbon waste ashes allows to improve thermal and durability performances of the thermoplastic starch (TPS) films. It reduces the water absorption of starch matrix and strongly decreases the deterioration of starch, independently from fillers amount, enhancing the lifetime of the TPS films in outdoor conditions. In addition, the waste carbon ashes/maize starch films present an advantage in comparison to those of neat starch; it can biodegrade, releasing the plant nutrients contained in the ashes into the soil. In conclusion, this approach for recycling carbon waste ashes increases the efficiency of industrial waste management, along with a reduction of its impact on the environment.
Collapse
Affiliation(s)
- Enrica Stasi
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, 73100 Lecce, Italy; (E.S.); (F.F.)
| | - Antonella Giuri
- Istituto di Nanotecnologia CNR-Nanotec c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (A.G.); (A.L.); (A.R.)
| | - Francesca Ferrari
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, 73100 Lecce, Italy; (E.S.); (F.F.)
| | - Vincenza Armenise
- Dipartimento di Chimica, Università di Bari “A. Moro”, via Orabona, 4, 70126 Bari, Italy;
| | - Silvia Colella
- Istituto di Nanotecnologia CNR-Nanotec c/o Dipartimento di Chimica, Università di Bari “A. Moro”, via Orabona, 4, 70126 Bari, Italy;
| | - Andrea Listorti
- Istituto di Nanotecnologia CNR-Nanotec c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (A.G.); (A.L.); (A.R.)
- Dipartimento di Chimica, Università di Bari “A. Moro”, via Orabona, 4, 70126 Bari, Italy;
| | - Aurora Rizzo
- Istituto di Nanotecnologia CNR-Nanotec c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (A.G.); (A.L.); (A.R.)
| | - Eleonora Ferraris
- Department of Mechanical Engineering, Campus de Nayer, 2860 KU Leuven, Belgium;
| | - Carola Esposito Corcione
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, 73100 Lecce, Italy; (E.S.); (F.F.)
- Istituto di Nanotecnologia CNR-Nanotec c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (A.G.); (A.L.); (A.R.)
- Correspondence:
| |
Collapse
|
26
|
Moshi AAM, Ravindran D, Bharathi SRS, Indran S, Saravanakumar SS, Liu Y. Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 2020; 142:212-221. [PMID: 31525413 DOI: 10.1016/j.ijbiomac.2019.09.094] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 01/13/2023]
Abstract
Physical, chemical, thermal and crystalline properties of new natural fiber extracted from the root of Ficus Religiosa tree(FRRF) are reported in this study. The chemical analysis and X-ray diffraction (XRD) analysis results ensured the presence of higher quantity of cellulose content (55.58 wt%) in the FRRF. Nuclear Magnetic Resonance (NMR) spectroscopy analysis is transported away to support the chemical groups present in the considered fibre. Thermal stability (325 °C), maximum degradation temperature (400 °C) and kinetic activation energy (68.02 kJ/mol.) of the FRRF areestablished by the thermo gravimetric analysis. The diameter (25.62 μm) and density (1246 kg/m3) of the FRRF have been found by the physical analysis. Scanning electron microscope analysis (SEM) and Atomic force microscope analysis (AFM) outcomes revealed that FRRF has the relatively smoothest surface. Altogether the above outcomes proved that novel FRRF is the desirable reinforcement to fabricate the fiber reinforced composite materials.
Collapse
Affiliation(s)
- A Arul Marcel Moshi
- Department of Mechanical Engineering, National Engineering College, Kovilpatti 628 503, Tuticorin District, Tamil Nadu, India.
| | - D Ravindran
- Department of Mechanical Engineering, National Engineering College, Kovilpatti 628 503, Tuticorin District, Tamil Nadu, India
| | - S R Sundara Bharathi
- Department of Mechanical Engineering, National Engineering College, Kovilpatti 628 503, Tuticorin District, Tamil Nadu, India
| | - S Indran
- Department of Mechanical Engineering, Rohini College of Engineering & Technology, Palkulam, Kanyakumari District, Tamil Nadu 629 401, India
| | - S S Saravanakumar
- Department of Mechanical Engineering, Kamaraj College of Engineering and Technology, Virudhunagar, Tamilnadu, India
| | - Yucheng Liu
- Key Laboratory of Bionic Engineering (Ministry of Education, PR China), Jilin University (Nanling Campus), Changchun 130022, PR China; Editorial Department of Journal of Bionic Engineering, Jilin University (Nanling Campus), Changchun 130022, PR China
| |
Collapse
|