1
|
Du J, Hong Y, Cheng L, Gu Z. Fabrication of starch-based nanoparticles to enhance the stability and in vivo release of insulin. Int J Biol Macromol 2025; 308:142393. [PMID: 40132711 DOI: 10.1016/j.ijbiomac.2025.142393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Oral delivery of insulin could provide a great convenience for the type-1 diabetics and type-2 diabetics when compared to subcutaneous injections. This study aimed to prepare nanoparticle based on starch and explore their potential use in oral delivery of insulin. Nanoparticles with a spherical micromorphology and particle size between 200 and 300 nm were formed based on the electrostatic interactions. The particle size and encapsulation ability could be adjusted by altering the pH. Compared to carboxymethyl starch (CMS) with a substitution degree (DS) of 0.1 (NP1), the nanoparticle (NP2) formed by CMS with high DS 0.2 showed higher stability in a range of pH and better release properties. The results hemolytic activity below 5 % and cell viability above 75 % indicated that the starch-based nanoparticles exhibited good biocompatibility. The cell uptake amount of NP1 and NP2 were approximately 4.78 and 4.35-fold that of the free insulin, respectively. Moreover, NP1 and NP2 exhibited better hypoglycemic response in diabetic mice after oral administration. The nanoparticles prepared using the organic solvent free method and their potential insulin-loading capacity indicated that they may be a potential carrier for oral delivery of insulin.
Collapse
Affiliation(s)
- Jing Du
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222000, Jiangsu Province, People's Republic of China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
2
|
Qiao S, Zhu J, Yang Y, Dai H, Fu Y, Chen H, Ma L, Zhang Y, Wang H. Effect of electrostatic repulsion on barrier properties and thermal performance of gelatin films by carboxymethyl starch, and application in food cooking. Int J Biol Macromol 2024; 261:129380. [PMID: 38244745 DOI: 10.1016/j.ijbiomac.2024.129380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Carboxymethyl starch (CST) was introduced to improve gelatin films and its practical application as edible high-performance films for food packaging and cooking was also investigated. The gelatin films modified by carboxymethyl starch exhibited the transparent appearance, tensile strength, barrier properties (oxygen, water vapor and UV light), and thermal performance (TGA, thermal shrinkage and heat-sealing strength). Resulting from the effect of electrostatic interaction modes on the properties of films, electrostatic repulsion could surpass electrostatic attraction in improving the tensile strength, oxygen barrier property and thermal stability of the films probably due to extensive physical entanglement without aggregation. Analysis of FTIR, zeta potential, interfacial dilatational rheology, shear rheological properties, XRD, Raman, SEM and AFM suggested that hydrogen bonding and electrostatic repulsion contributed to the excellent performance. The packaged food could also be cooked with the prepared film for porridge; and the film slightly influenced the shear rheological properties of porridge and imposed little effect on the odors (Electronic-Nose) of porridge. Hence, the gelatin films modified by carboxymethyl starch could potentially work as the edible inner packaging or the edible quantitative packaging for food, offer convenience for consumers, reduce the packaging waste and avoid an extra burden on environment.
Collapse
Affiliation(s)
- Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Chang R, Xu K, Zhang R, Jin Z, Aiguo M. A combined recrystallization and acetylation strategy for resistant starch with enhanced thermal stability and excellent short-chain fatty acid production. Food Chem 2024; 430:136970. [PMID: 37549628 DOI: 10.1016/j.foodchem.2023.136970] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/10/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
In this study, resistant starch (RS) with enhanced thermal stability and excellent short-chain fatty acid production was obtained using recrystallization at 50 °C of debranched waxy maize starch followed by an acetylation strategy. RS sample obtained by debranching with a 25% high concentration of native starch combined with recrystallization at 50 °C (25DBS-50 °CP) and acetylated RS (25DBS-50 °CPA) exhibited high relative crystallinity of 69.4% and 64.2%, respectively. And the peak gelatinization temperature values of them reached 116.8 °C and 111.4 °C, and the RS contents of them after cooking for 30 min remained at 35.1% and 40.0%, respectively. The acetic acid yield of 25DBS-50 °CPA was higher than that of the control group. These results indicated that recrystallization at 50 °C combined with acetylation for debranched starch could be used as a new method for regulating the digestibility and fermentation properties while developing food with a low glycemic response and specific nutritional benefits.
Collapse
Affiliation(s)
- Ranran Chang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China; The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - KunJie Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Rao Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ma Aiguo
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
4
|
Xu J, Wang F, Zhan J, Li Y, Wang T, Ma R, Tian Y. Construction of TiO2/starch nanocomposite cryogel for ethylene removal and banana preservation. Carbohydr Polym 2023; 312:120825. [PMID: 37059552 DOI: 10.1016/j.carbpol.2023.120825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Perishability caused by natural plant hormone ethylene has attracted great attention in the field of fruit and vegetable (F&V) preservation. Various physical and chemical methods have been applied to remove ethylene, but the eco-unfriendliness and toxicity of these methods limit their application. Herein, a novel starch-based ethylene scavenger was developed by introducing TiO2 nanoparticles into starch cryogel and applying ultrasonic treatment to further improve ethylene removal efficiency. As a porous carrier, the pore wall of cryogel provided dispersion space, which increased the area of TiO2 exposed to UV light, thereby endowing starch cryogel with ethylene removal capacity. The photocatalytic performance of scavenger reached the maximum ethylene degradation efficiency of 89.60 % when the TiO2 loading was 3 %. Ultrasonic treatment interrupted starch molecular chains and then promoted their rearrangement, increasing the material specific surface area from 54.6 m2/g to 225.15 m2/g and improving the ethylene degradation efficiency by 63.23 % compared with the non-sonicated cryogel. Furthermore, the scavenger exhibits good practicability for removing ethylene as a banana package. This work provides a new carbohydrate-based ethylene scavenger, utilizing as a non-food contact inner filler of F&V packaging in practical applications, which exhibits great potential in F&V preservation and broadens the application fields of starch.
Collapse
|
5
|
Platelet Lysate as a Promising Medium for Nanocarriers in the Management and Treatment of Ocular Diseases. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Xie X, Zhang Y, Zhu Y, Lan Y. Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles. NANOMATERIALS 2022; 12:nano12040598. [PMID: 35214927 PMCID: PMC8877468 DOI: 10.3390/nano12040598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
Based on the characteristics of charge reversal around the isoelectric point (pI) of amphoteric starch-containing anionic and cationic groups, amphoteric cassava starch nanoparticles (CA-CANPs) are prepared by a W/O microemulsion crosslinking method using (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride as a cationic reagent and POCl3 as an anionic reagent, and the effects of preparation conditions on the particle size of the CA-CANPs are studied in detail in the present study. CA-CANPs with a smooth surface and an average diameter of 252 nm are successfully prepared at the following optimised conditions: a crosslinking agent amount of 15 wt%, an aqueous starch concentration of 6.0 wt%, an oil–water ratio of 10:1, a total surfactant amount of 0.20 g·mL−1, and a CHPTAC amount of 4.05 wt%. The pH-responsive value of the CA-CANPs can be regulated by adjusting the nitrogen–phosphorus molar ratio in the CA-CANPs. By using CA-CANPs with a pI of 6.89 as drug carriers and the paclitaxel (PTX) as a model drug, the maximum loading rate of 36.14 mg·g−1 is achieved, and the loading process is consistent with the Langmuir isotherm adsorption, with the calculated thermodynamic parameters of ΔH° = −37.91 kJ·mol−1, ΔS° = −10.96 J·mol−1·K−1 and ΔG° < 0. By testing the release rate in vitro, it is noted that the release rates of PTX in a neutral environment (37.6% after 96 h) and a slightly acidic environment (58.65% after 96 h) are quite different, suggesting that the CA-CANPs have the possibility of being a targeted controlled-release carrier with pH responsiveness for antitumor drugs.
Collapse
|
7
|
Ningrum EO, Gotoh T, Ciptonugroho W, Karisma AD, Agustiani E, Safitri ZM, Dzaky MA. Novel Thermosensitive- co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization. Gels 2021; 7:273. [PMID: 34940333 PMCID: PMC8701273 DOI: 10.3390/gels7040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Zwitterionic betaine polymers are promising adsorbents for the removal of heavy metal ions from industrial effluents. Although the presence of both negative and positively charged groups imparts them the ability to simultaneously remove cations and anions, intra- and/or inter-chain interactions can significantly reduce their adsorption efficiencies. Therefore, in this study, novel gels based on crosslinked co-polymers of thermosensitive N-isopropylacrylamide (NIPAAM) and zwitterionic sulfobetaine N,N-dimethylacrylamido propyl ammonium propane sulfonate (DMAAPS) were synthesized, characterized, and evaluated for ion removal. Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) analyses confirmed the success of the co-polymerization of NIPAAM and DMAAPS to form poly(NIPAAM-co-DMAAPS). The phase transition temperature of the co-polymer increased with increasing DMAAPS content in the co-polymer, indicating temperature-dependent amphiphilic behavior, as evidenced by contact angle measurements. The ion adsorption analyses of the poly(NIPAAM-co-DMAAPS) gels indicated that co-polymerization increased the molecular distance and weakened the interaction between the DMAAPS-charged groups (SO3- and N+), thereby increasing the ion adsorption. The results confirmed that, with a low concentration of DMAAPS in the co-polymer gels (~10%), the maximum amount of Cr3+ ions adsorbed onto the gel was ~58.49% of the sulfonate content in the gel.
Collapse
Affiliation(s)
- Eva Oktavia Ningrum
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
- Department of Chemical Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima 739-8527, Japan
| | - Takehiko Gotoh
- Department of Chemical Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima 739-8527, Japan
| | - Wirawan Ciptonugroho
- Chemical Engineering Department, Faculty of Engineering, Sebelas Maret University, Jalan Ir. Sutami 36A, Surakarta 57126, Indonesia;
| | - Achmad Dwitama Karisma
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
| | - Elly Agustiani
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
| | - Zela Marni Safitri
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
| | - Muhammad Asyam Dzaky
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
| |
Collapse
|
8
|
Xie X, Zhao X, Luo X, Su T, Zhang Y, Qin Z, Ji H. Mechanically activated starch magnetic microspheres for Cd(II) adsorption from aqueous solution. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Chang R, Jin Z, Lu H, Qiu L, Sun C, Tian Y. Type III Resistant Starch Prepared from Debranched Starch: Structural Changes under Simulated Saliva, Gastric, and Intestinal Conditions and the Impact on Short-Chain Fatty Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2595-2602. [PMID: 33617247 DOI: 10.1021/acs.jafc.0c07664] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type III resistant starch (RS3) has high resistance to enzymatic digestibility and benefits colonic bacteria by producing short-chain fatty acids (SCFAs) via fermentation. Studies have delineated RS preparation and the description of RS fractions with different types of starch, but the digestion process has received little attention. The molecular and crystalline structure changes, thermal properties, and SCFA content of RS3 obtained from debranched starch were investigated in simulated salivary, gastric, and intestinal digestion systems. The average degree of polymerization and the melting enthalpy change of the digested RS3 residues increased; a high molecular order was reflected by the higher relative crystallinity. Fine structural changes suggested that enzyme-resistant starch might form during digestion by the rearrangement of short amylose chains into enzyme-resistant structures with higher relative crystallinity. After fermentation of human feces, RS3 increased the SCFA content, especially of butyric acid, indicating that this recrystallized RS3 could be a new prebiotic product.
Collapse
Affiliation(s)
- Ranran Chang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lizhong Qiu
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| | - Chunrui Sun
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| |
Collapse
|