Starch-based magnetic nanocomposite for targeted delivery of hydrophilic bioactives as anticancer strategy.
Carbohydr Polym 2021;
264:118017. [PMID:
33910740 DOI:
10.1016/j.carbpol.2021.118017]
[Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Magnetic nanocomposites were synthesized for the targeted delivery of hydrophilic bioactives through guidance generated by a magnetic field. Superparamagnetic iron oxide nanoparticles (SPIONs) were used to generate hydroxyethyl starch magnetic nanocapsules (HES MNCs). This synthesis allowed the co-encapsulation of oncocalyxone A (onco A) and surface-modified magnetite nanoparticles (Fe3O4@citrate) into the same nanostructure. The synthesized nanocapsules exhibited a core-shell morphology, with an average diameter of 143 nm. This nanocomposite showed potential anticancer activity (IC50) against four human tumor cell lines: glioblastoma SNB-19 (1.010 μgmL-1), colon carcinoma HCT-116 (2.675 μgmL-1), prostate PC3 (4.868 μgmL-1), and leukemia HL-60 (2.166 μgmL-1). Additionally, in vivo toxicity and locomotor activity were evaluated in a zebrafish (Danio rerio) model. The nanocomposite exhibited in vitro cytotoxicity, prolonged drug release profile and also responded to an applied magnetic field, representing a versatile compound with perspectives for highest concentration of different hydrophilic bioactives in a target tissue through magnetic vectorization.
Collapse