1
|
Yu H, Qi H, Cheng W, Li W, Wang J. Synergistic oxidative modification and covalent cross-linking for the construction of sesbania gum-based high efficiency dust suppression foam sols. Int J Biol Macromol 2025; 295:139414. [PMID: 39788266 DOI: 10.1016/j.ijbiomac.2024.139414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
To effectively utilize sesbania gum in coal dust control and address the limitations of excessive viscosity and mediocre strength, oxidation treatment was used to improve its fluidity. Polyvinyl alcohol (PVA) and sodium trimetaphosphite (STMP) were used to enhance oxidized sesbania gum OSG, and crosslinking technology was used to improve its mechanical stability. This study developed a novel foam dust suppressant OSG-PVA/SDBS by response surface design, and the optimized dust suppressant material exhibited excellent adhesion and curing properties. It was found that sulfonic acid groups (-SO3H) of SDBS gradually congregate to occupy the binding site on the OSG-PVA polymer chain, bolstering the water-locking capacity of the liquid film and the foam stability. Concurrently, the hydrophobic tail chains in SDBS adsorb onto the hydrophobic points on the coal surface, establishing a dual adsorption mechanism. Simulation revealed that the thickness of water molecule absorption layer increased by 11.3 Å under this dual adsorption, strengthening the interaction between coal and water. After repeated wind erosion and rain washing, the coal samples sprayed with OSG-PVA/SDBS exhibited low wind erosion rate (22.64 %) and rain erosion rate (23.22 %). Moreover, the dust suppression rate surpassed 95 % following outdoor application of the suppressant foam. These results offer innovative perspectives and strategies for the research and mitigation of coal dust pollution.
Collapse
Affiliation(s)
- Haiming Yu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Han Qi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weimin Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wang Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jiayin Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Tanwar M, Gupta RK, Rani A. Natural gums and their derivatives based hydrogels: in biomedical, environment, agriculture, and food industry. Crit Rev Biotechnol 2024; 44:275-301. [PMID: 36683015 DOI: 10.1080/07388551.2022.2157702] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 01/24/2023]
Abstract
The hydrogels based on natural gums and chemically derivatized natural gums have great interest in pharmaceutical, food, cosmetics, and environmental remediation, due to their: economic viability, sustainability, nontoxicity, biodegradability, and biocompatibility. Since these natural gems are from plants, microorganisms, and seaweeds, they offer a great opportunity to chemically derivatize and modify into novel, innovative biomaterials as scaffolds for tissue engineering and drug delivery. Derivatization improves swelling properties, thereby developing interest in agriculture and separating technologies. This review highlights the work done over the past three and a half decades and the possibility of developing novel materials and technologies in a cost-effective and sustainable manner. This review has compiled various natural gums, their source, chemical composition, and chemically derivatized gums, various methods to synthesize hydrogel, and their applications in biomedical, food and agriculture, textile, cosmetics, water purification, remediation, and separation fields.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Archna Rani
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
3
|
Wang M, Huang D, Sun Y, Yao G, Huan H, Chen J. Antibacterial Activity of Modified Sesbania Gum Composite Film and Its Preservation Effect on Wampee Fruit ( Clausena lansium (Lour.) Skeels). Foods 2024; 13:639. [PMID: 38472754 DOI: 10.3390/foods13050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
The primary challenges in fruit and vegetable preservation include extending storage duration while preserving sensory quality and nutritional value. In this study, sesbania gum (SG) was oxidized to prepare oxidized sesbania gum (OSG). An OSG/ZnO composite film was subsequently prepared, combining OSG, sodium carboxymethyl cellulose (CMC), and nano-zinc oxide (nano-ZnO). The preparation technology was determined via a response surface optimization experiment. When the addition amount of nano-ZnO exceeded 0.3 mg/mL, the composite films exhibited an antibacterial rate of over 90% against E. coli and S. aureus. For wampee (Clausena lansium (Lour.) Skeels) preservation, a OSG/ZnO-0.3 film was directly applied as a coating. The findings demonstrated favorable results in terms of the rate of rotting, soluble solids, and titrable acidity, effectively prolonging wampee fruit storage. This suggests the potential of an OSG composite film with nano-ZnO as a promising fruit packaging material, thereby expanding the application of SG and wampee fruit preservation.
Collapse
Affiliation(s)
- Mingyan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Dongfen Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Yue Sun
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Guanglong Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Hengfu Huan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Wang M, Huang D, Sun Y, Chen J, Huan H, Yao G. Oxidation of sesbania gum using an octenyl succinate-esterified composite. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2159976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mingyan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS) / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Hainan Haikou, P. R. China
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Dongfen Huang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Yue Sun
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Jian Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS) / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Hainan Haikou, P. R. China
| | - Hengfu Huan
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Guanglong Yao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS) / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Hainan Haikou, P. R. China
| |
Collapse
|
5
|
Octenyl succinate hydroxypropyl acidolysis tamarind gum: synthesis, optimization, structure and properties. Polym J 2022. [DOI: 10.1038/s41428-022-00702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Tang H, Liu Y, Li Y, Liu X. Octenyl succinate acidolysis carboxymethyl sesbania gum with high esterification degree: preparation, characterization and performance. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Li P, Wang T, He J, Jiang J, Lei F. Diffusion of water and protein drug in 1,4-butanediol diglycidyl ether crosslinked galactomannan hydrogels and its correlation with the physicochemical properties. Int J Biol Macromol 2021; 183:1987-2000. [PMID: 34087302 DOI: 10.1016/j.ijbiomac.2021.05.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to obtain a better and safer galactomannan-based material for drug release applications. A novel epoxy-crosslinked galactomannan hydrogel (EGH) was prepared from guar gum using 1,4-butanediol diglycidyl ether as a crosslinking agent. The diffusion rate constant of water molecules in freeze-dried EGH positively correlated with water uptake/equilibrium swelling rate (WU/ESR), and the water molecules participated in Fickian diffusion. The ESR, WU/ESR, and bovine serum albumin (BSA) loading capacity of a customized EGH with a crosslinking density of 48.9% were 48.7 ± 0.15 g/g, 95.3%, and 56.4 mg/g, respectively. The release of BSA from freeze-dried EGH was affected by the WU/ESR and the pH; the release equilibrium time was ~40 h at pH 1.2, decreasing to ~24 h at pH 7.4. Furthermore, the cumulative release rate increased from 63.5% to 80.7% and the t50 decreased from 59 to 41 min upon changing from the acidic to basic pH. The release process conformed to the Ritger-Peppas and Hixson-Crowell models, and represented Fickian diffusion and chain relaxation. The EGH showed no cytotoxicity toward HeLa cells. Together, these results demonstrate the properties of a novel galactomannan-based hydrogel that can potentially be employed as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Jing He
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|