1
|
Pu Y, Gu Z, Bovee TFH, Yang Y, Ying Y, Li M, Hong X. Superparamagnetic photonic crystals with DNA probes for rapid visual detection of mercury. Food Chem 2024; 459:140354. [PMID: 39003863 DOI: 10.1016/j.foodchem.2024.140354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
A novel superparamagnetic photonic crystal DNA probe (Fe3O4@SiO2@amino@DNA SPC) was developed to enable rapid visual detection of Hg2+. This unique photonic crystal (PC) was synthesized by combining superparamagnetic nanospheres with DNA probes. The DNA probe, rich in thymine (T), detects mercury ions through base mismatch, resulting in the formation of T-Hg2+-T loop hairpin structures. With the binding of Hg2+ to the probe attached to superparamagnetic nanospheres, the PC structure assembled by these nanospheres, formed by the magnetic field, was changed. This change enhanced the reflection intensity; it could be quantified using a fiber optic spectrometer and was visible to the naked eye. The Fe3O4@SiO2@amino@DNA SPC, specific to Hg2+, exhibited a reflection peak at 679 nm, which intensified with increasing Hg2+ concentration. The reflection intensity increased by 132.58 a.u., and the PC color shifted from red to yellow as the Hg2+ concentration increased from 0.1 μg/L to 1 mg/L.
Collapse
Affiliation(s)
- Yongfu Pu
- Yunnan Normal University, College of Vocational Education, Kunming 650092, China
| | - Zhijia Gu
- Kunming Institute of Botany, Chinese Academy of Sciences, Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming 650201, China
| | - Toine F H Bovee
- Wageningen University & Research, Wageningen Food Safety Research (WFSR), Wageningen, 6708WB, Netherlands
| | - Ying Yang
- Yunnan Normal University, College of Vocational Education, Kunming 650092, China
| | - Yu Ying
- Yunnan Normal University, College of Vocational Education, Kunming 650092, China
| | - Maokang Li
- Yunnan Normal University, College of Vocational Education, Kunming 650092, China
| | - Xiaodi Hong
- Yunnan Normal University, College of Vocational Education, Kunming 650092, China; Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, 69120, Germany.
| |
Collapse
|
2
|
Thomas S, Gonsalves RA, Jose J, Zyoud SH, Prasad AR, Garvasis J. Plant-based synthesis, characterization approaches, applications and toxicity of silver nanoparticles: A comprehensive review. J Biotechnol 2024; 394:135-149. [PMID: 39159752 DOI: 10.1016/j.jbiotec.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
The development of an environmentally benign method for the synthesis of nanoparticles has been facilitated by green chemistry. "Green synthesis" uses a range of biological elements like microbes, plants, and other biodegradable materials to produce NPs. Active biomolecules that are secreted by natural strains and present in the plant extracts serve as both reducing and capping/stabilizing agents. Microorganisms' intracellular enzymes can reduce metal ions, which explains how NPs might potentially nucleate. Plant-based synthesis of nanomaterials is particularly promising owing to abundant resources, simplicity of synthesis, and low cost. Silver nanoparticles (AgNPs) are attracting great attention in the research community due to their wide variety of applications in chemistry, food technology, microbiology, and biomedicine. Recent years have seen a large amount of research on the bio-genic synthesis of AgNPs employing biomaterials like plant extract and bacteria as reducing agents. Herein we discuss a thorough overview of the plant-based synthesis of silver nanoparticles (AgNPs), characterization approaches, applications, and toxicity. The review covers the green chemistry and nanotechnology elements of producing AgNPs, including a thorough discussion of the plant extract mediated synthesis, detailed formation mechanism, and a well-balanced emphasis on hazards and advantages. Based on current developments, the optimisation strategies, applications, and interdisciplinary characteristics are also covered in detail.
Collapse
Affiliation(s)
- Shijith Thomas
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Richard A Gonsalves
- Department of Chemistry, St. Aloysius College (Autonomous), Mangalore 575003, India.
| | - Jomy Jose
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Samer H Zyoud
- Department of Mathematics and Sciences, Center of Medical and Bio-Allied Health Science Research, Ajman University, P.O.Box: 346, United Arab Emirates.
| | - Anupama R Prasad
- Department of Chemistry, Christ College (Autonomous), Thrissur 680125, India.
| | - Julia Garvasis
- Department of Chemistry, University of Calicut, Malappuram 680566, India.
| |
Collapse
|
3
|
Priyadarshini B, Stango AX, Balasubramanian M, Vijayalakshmi U. In situ fabrication of cerium-incorporated hydroxyapatite/magnetite nanocomposite coatings with bone regeneration and osteosarcoma potential. NANOSCALE ADVANCES 2023; 5:5054-5076. [PMID: 37705779 PMCID: PMC10496897 DOI: 10.1039/d3na00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023]
Abstract
With the ultimate goal of providing a novel platform able to inhibit bacterial adhesion, biofilm formation, and anticancer properties, cerium-doped hydroxyapatite films enhanced with magnetite were developed via spin-coating. The unique aspect of the current study is the potential for creating cerium-doped hydroxyapatite/Fe3O4 coatings on a titanium support to enhance the functionality of bone implants. To assure an increase in the bioactivity of the titanium surface, alkali pretreatment was done before deposition of the apatite layer. Scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD) analysis, and Fourier transform-infrared (FTIR) spectroscopy were used to evaluate coatings. Coatings demonstrated good efficacy against Staphylococcus aureus and Escherichia coli, with the latter showing the highest efficacy. In vitro bioactivity in simulated body fluid solution showed this material to be proficient for bone-like apatite formation on the implant surface. Electrochemical impedance spectroscopy was undertaken on intact coatings to examine the barrier properties of composites. We found that spin-coating at 4000 rpm could greatly increase the total resistance. After seeding with osteoblastic populations, Ce-HAP/Fe3O4 materials the adhesion and proliferation of cells. The heating capacity of the Ce-HAP/Fe3O4 film was optimal at 45 °C at 15 s at a frequency of 318 kHz. Osseointegration depends on many more parameters than hydroxyapatite production, so these coatings have significant potential for use in bone healing and bone-cancer therapy.
Collapse
Affiliation(s)
- B Priyadarshini
- Department of Chemistry, School of Advanced Sciences, VIT Vellore 632 014 Tamil Nadu India +91-416-224 3092 +91-416-2202464
- Dept of Metallurgical and Materials Engineering Indian Institute of Technology-Madras (IIT Madras) Chennai 600 036 India
| | - Arul Xavier Stango
- Department of Chemistry, Kalasalingam Academy of Research and Education Krishnankoil Srivilliputhur Tamil Nadu 626126 India
| | - M Balasubramanian
- Dept of Metallurgical and Materials Engineering Indian Institute of Technology-Madras (IIT Madras) Chennai 600 036 India
| | - U Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences, VIT Vellore 632 014 Tamil Nadu India +91-416-224 3092 +91-416-2202464
| |
Collapse
|
4
|
Ernst D, Kolenčík M, Šebesta M, Ďurišová Ľ, Ďúranová H, Kšiňan S, Illa R, Safarik I, Černý I, Kratošová G, Žitniak Čurná V, Ivanič Porhajašová J, Babošová M, Feng H, Dobročka E, Bujdoš M, Pospiskova KZ, Afzal S, Singh NK, Swamiappan S, Aydın E. Agronomic Investigation of Spray Dispersion of Metal-Based Nanoparticles on Sunflowers in Real-World Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091789. [PMID: 37176847 PMCID: PMC10180907 DOI: 10.3390/plants12091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
In environmental and agronomic settings, even minor imbalances can trigger a range of unpredicted responses. Despite the widespread use of metal-based nanoparticles (NPs) and new bio-nanofertilizers, their impact on crop production is absent in the literature. Therefore, our research is focused on the agronomic effect of spray application of gold nanoparticles anchored to SiO2 mesoporous silica (AuSi-NPs), zinc oxide nanoparticles (ZnO-NPs), and iron oxide nanoparticles (Fe3O4-NPs) on sunflowers under real-world environments. Our findings revealed that the biosynthetically prepared AuSi-NPs and ZnO-NPs were highly effective in enhancing sunflower seasonal physiology, e.g., the value of the NDVI index increased from 0.012 to 0.025 after AuSi-NPs application. The distribution of leaf trichomes improved and the grain yield increased from 2.47 t ha-1 to 3.29 t ha-1 after ZnO-NPs application. AuSi-NPs treatment resulted in a higher content of essential linoleic acid (54.37%) when compared to the NPs-free control (51.57%), which had a higher determined oleic acid. No NPs or residual translocated metals were detected in the fully ripe sunflower seeds, except for slightly higher silica content after the AuSi-NPs treatment. Additionally, AuSi-NPs and NPs-free control showed wide insect biodiversity while ZnO-NPs treatment had the lowest value of phosphorus as anti-nutrient. Contradictory but insignificant effect on physiology, yield, and insect biodiversity was observed in Fe3O4-NPs treatment. Therefore, further studies are needed to fully understand the long-term environmental and agricultural sustainability of NPs applications.
Collapse
Affiliation(s)
- Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Ramakanth Illa
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati 522 237, Andra Pradesh, India
| | - Ivo Safarik
- Department of Nanobiotechnology, Institute of Soil Biology and Biogeochemistry (ISBB), Biology Centre, Czech Academy of Sciences, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Ivan Černý
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Gabriela Kratošová
- Nanotechnology Centre, CEET, VŠB Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava, Czech Republic
| | - Veronika Žitniak Čurná
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Ivanič Porhajašová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Mária Babošová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, 1 Normal Ave, Montclair, NJ 070 43, USA
| | - Edmund Dobročka
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Kristyna Zelena Pospiskova
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Shadma Afzal
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Nand K Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | | | - Elena Aydın
- Institute of Landscape Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Hospodárska 7, 949 76 Nitra, Slovakia
| |
Collapse
|
5
|
Nandhini G, Shobana MK. Influence of phytochemicals with iron oxide nanoparticles for biomedical applications: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Samrot AV, Bavanilatha M, Krithika Shree S, Sathiyasree M, Vanjinathan J, Shobana N, Thirugnanasambandam R, Kumar C, Wilson S, Rajalakshmi D, Noel Richard Prakash LX, Sanjay Preeth RS. Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model. TOXICS 2022; 10:742. [PMID: 36548575 PMCID: PMC9783389 DOI: 10.3390/toxics10120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticles are potential candidates for wastewater treatment especially for the removal of heavy metals due to their strong affinity. Many biopolymers are used as adsorbents and encapsulation of nanoparticle onto them can increase their efficiency. In this study, SPIONs, alginate, and SPIONs incorporated on alginate beads have been synthesized and characterized both microscopically and spectroscopically. These were then used for the removal of chromium metal and the percentage of removal was evaluated using a batch adsorption study. The percent removal of chromium using SPIONs, alginate and alginate-SPIONs beads were recorded to be 93%, 91% and 94%, respectively. The adsorption of chromium using SPIONs and alginate-SPIONs beads followed the Tempkin isotherm, whereas adsorption of chromium metal by alginate beads was found to be homogeneous in nature and followed the Langmuir isotherm with an R2 value of 0.9784. An in-vivo study using Danio rerio as a model organism was done to examine the toxicity and the removal efficiency of the samples. It was observed that chromium water treated with alginate-SPIONs beads, which were removed after water treatment showed less damage to the fishes when compared to SPIONs and alginate beads treated with chromium water where the SPIONs and alginate beads were not removed after the treatment period.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - Muthiah Bavanilatha
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sivasuriyan Krithika Shree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Mahendran Sathiyasree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Jayaram Vanjinathan
- Department of Civil Engineering, Sathyabama Institute of Science and Technology, School of Building and Environment, Chennai 600119, Tamil Nadu, India
| | - Nagarajan Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajendran Thirugnanasambandam
- Centre for Ocean Research (DST—FIST Sponsored Centre), MoES—Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Chandrasekaran Kumar
- Centre for Ocean Research (DST—FIST Sponsored Centre), MoES—Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Samraj Wilson
- Department of Botany, St. John’s College, Tirunelveli 627002, Tamil Nadu, India
| | - Deenadhayalan Rajalakshmi
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Lawrence Xavier Noel Richard Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Ram Singh Sanjay Preeth
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
7
|
K V, G P, S M, G R, S S. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: A greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Baz MM, Khater HF, Baeshen RS, Selim A, Shaheen ES, El-Sayed YA, Salama SA, Hegazy MM. Novel Pesticidal Efficacy of Araucaria heterophylla and Commiphora molmol Extracts against Camel and Cattle Blood-Sucking Ectoparasites. PLANTS 2022; 11:plants11131682. [PMID: 35807634 PMCID: PMC9269226 DOI: 10.3390/plants11131682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Botanical insecticides are promising pest control agents. This research investigated the novel pesticidal efficacy of Araucaria heterophylla and Commiphora molmol extracts against four ectoparasites through treated envelopes. Seven days post-treatment (PT) with 25 mg/mL of C. molmol and A. heterophylla, complete mortality of the camel tick, Hyalomma dromedarii and cattle tick, Rhipicephalus (Boophilus) annulatus were reached. Against H. dromedarii, the median lethal concentrations (LC50s) of the methanol extracts were 1.13 and 1.04 mg/mL and those of the hexane extracts were 1.47 and 1.38 mg/mL, respectively. The LC50 values of methanol and hexane extracts against R. annulatus were 1.09 and 1.41 plus 1.55 and 1.08 mg/mL, respectively. Seven days PT with 12.5 mg/mL, extracts completely controlled Haematopinus eurysternus and Hippobosca maculata; LC50 of Ha. eurysternus were 0.56 and 0.62 mg/mL for methanol extracts and 0.55 and 1.00 mg/mL for hexane extracts, respectively, whereas those of Hi. maculata were 0.67 and 0.78 mg/mL for methanol extract and 0.68 and 0.32 mg/mL, respectively, for hexane extracts. C. molmol extracts contained sesquiterpene, fatty acid esters and phenols, whereas those of A. heterophylla possessed monoterpene, sesquiterpene, terpene alcohols, fatty acid, and phenols. Consequently, methanol extracts of C. molmol and A. heterophylla were recommended as ecofriendly pesticides.
Collapse
Affiliation(s)
- Mohamed M. Baz
- Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt; (Y.A.E.-S.); (M.M.H.)
- Correspondence: ; Tel.: +20-01063070572
| | - Hanem F. Khater
- Parasitology Department, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Rowida S. Baeshen
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Emad S. Shaheen
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
| | - Yasser A. El-Sayed
- Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt; (Y.A.E.-S.); (M.M.H.)
| | - Salama A. Salama
- Department of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Maysa M. Hegazy
- Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt; (Y.A.E.-S.); (M.M.H.)
- Department of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
9
|
Samrot AV, Purohit K, Saigeetha S, Shobana N, Stalin Dhas T, Jane Cypriyana P. Citrus sinensis cellulose fibres incorporated with SPIONs for effective removal of crystal violet dye. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Simple and cost-effective approach to synthesis of iron magnesium oxide nanoparticles using Alstonia scholaris and Polyalthia longifolia leaves extracts and their antimicrobial, antioxidant and larvicidal activities. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02051-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Cypriyana P J J, S S, Angalene J LA, Samrot AV, Kumar S S, Ponniah P, Chakravarthi S. Overview on toxicity of nanoparticles, it's mechanism, models used in toxicity studies and disposal methods – A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Ahmed T, Liaqat I, Hyder MZ, Akhtar S, Bhatti AH, Butt SB, Imran Z, Yasmin T, Abbas S. Elucidation of larvicidal potential of metallic and environment friendly food-grade nanostructures against Aedes albopictus. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1903-1925. [PMID: 33179203 DOI: 10.1007/s10653-020-00771-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
To combat health challenges associated with mosquito-borne diseases, the larvicidal activity of metallic nanoparticles, food-grade polymeric nano-capsules and insecticides was investigated against larvae of Aedes albopictus as an effective alternate control approach. The Ae. albopictus was identified using sequencing and phylogenetic analyses of COXI, CYTB and ITS2 genes. The characterization of synthesized nanostructures was performed through Zetasizer, UV-VIS spectroscopy, atomic force microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The mosquito larvae were exposed to varying concentration of nanostructures and insecticides, and their percentage mortality was evaluated at different time intervals of 24 h and 48 h exposure. The highest efficacy was observed in zinc oxide nanoparticles (ZnO-NPs) and polymeric nanocapsules FG-Cur E-III (LC50 = 0.24 mg/L, LC90 = 0.6 mg/L) and (LC50 = 3.8 mg/L, LC90 = 9.33 mg/L), respectively, after 24 h; while (LC50 = 0.18 mg/L, LC90 = 0.43 mg/L) and (LC50 = 1.95 mg/L, LC90 = 6.46 mg/L), respectively, after 48 h against fourth instar larvae of Ae. albopictus. Ag, CuO, NiTiO3 and CoTiO3 nanoparticles evaluated in this study also showed promising larvicidal activity. Although ZnO-NPs proved to be effective larvicides, their possible toxicity (producing ROS species) can limit their use. The curcumin nanostructures (FG-Cur E-III) stabilized by food-grade materials are thought to exert their larvicidal activity by binding to sterol carrier protein-2, and depriving the larvae from the essential dietary cholesterol, and bears effective larvicidal potential as safe alternative for chemical larvicides, due to their environment friendly, food-grade and easy biodegradability.
Collapse
Affiliation(s)
- Toqeer Ahmed
- Centre for Climate Research and Development (CCRD), COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Irfan Liaqat
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Muhammad Zeeshan Hyder
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan.
| | - Shaheen Akhtar
- Health Services Academy (HSA), Park Road, Islamabad, Pakistan
| | | | - Shahid Bilal Butt
- Preston Institute of Nano Sciences and Technology (PINSAT), Preston University, Islamabad, Pakistan
| | - Zahid Imran
- Department of Physics, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Shabbar Abbas
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| |
Collapse
|