1
|
He Y, Ji L, Yuan Y, Rui D, Li J, Cheng P, Sun L, Fan J. Recent advances in polysaccharide-dominated extracellular polymeric substances from microalgae: A review. Int J Biol Macromol 2025; 302:140572. [PMID: 39904439 DOI: 10.1016/j.ijbiomac.2025.140572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Microalgae are an environmentally friendly and sustainable alternative resource for future food and pharmaceutical production. Microalgal extracellular polymeric substances (EPMS) are polymers consisting of polysaccharides, proteins, lipids and nucleic acids secreted by microalgal cells. This review systematically summarizes the research progress of microalgal EPMS, including its composition, structure, formation, biological activity and application. The diversity of structural units and binding modes confers microalgal EPMS with unique structural and biological activity, which is species-specific. In addition to the polysaccharides with antioxidant, antiviral, and antitumor effects, extracellular vesicles isolated from microalgal EPMS are emerging as new drug carriers. However, challenges such as relatively low yields, complex separation techniques, intricate processing-secretion pathways, and unclear mechanisms of action still hinder the industrial application of microalgal EPMS. By scientifically summarizing the research progress and leveraging strategies such as metabolic regulation, genetic modification, and advanced separation and characterization technologies, microalgal EPMS is expected to see widespread applications in the food, cosmetics, and therapeutic industries.
Collapse
Affiliation(s)
- Yulong He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liang Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuchen Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Die Rui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaxin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Liyun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Dong YH, Wang ZX, Chen C, Wang PP, Fu X. A review on the hypoglycemic effect, mechanism and application development of natural dietary polysaccharides. Int J Biol Macromol 2023; 253:127267. [PMID: 37820903 DOI: 10.1016/j.ijbiomac.2023.127267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Diabetes mellitus (DM) as one chronic metabolic disease was greatly increased over recent decades. The major agents treating diabetes have noticeable side effects as well as the tolerability problems. The bioactive dietary polysaccharides from abundant natural resources exhibit good hypoglycemic effect with rare adverse effects, which might serve as a candidate to prevent and treat diabetes. However, the correlations between the hypoglycemic mechanism of polysaccharides and their structure were not mentioned in several studies, what's more, most of the current hypoglycemic studies on polysaccharides were based on in vitro and in vivo experiments, and there was a lack of knowledge about the effects in human clinical trials. The aim of this review is to discuss recent literature about the variety of dietary polysaccharides with hypoglycemic activity, as well the mechanism of action and the structure-function relationship are highlighted. Meanwhile, the application of dietary polysaccharides in functional foods and clinical medicine are realized with an in-depth understanding. So as to promote the exploration of dietary polysaccharides in low glycemic healthy foods or clinical medicine to prevent and treat diabetes.
Collapse
Affiliation(s)
- Yu-Hao Dong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhen-Xing Wang
- College of life Science, Southwest Forestry University, Kunming 650224, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Ping-Ping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
3
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Tang L, Xiao M, Cai S, Mou H, Li D. Potential Application of Marine Fucosyl-Polysaccharides in Regulating Blood Glucose and Hyperglycemic Complications. Foods 2023; 12:2600. [PMID: 37444337 DOI: 10.3390/foods12132600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes mellitus (DM) has become the world's third major disease after tumors and cardiovascular disease. With the exploitation of marine biological resources, the efficacy of using polysaccharides isolated from marine organisms in blood glucose regulation has received widespread attention. Some marine polysaccharides can reduce blood glucose by inhibiting digestive enzyme activity, eliminating insulin resistance, and regulating gut microbiota. These polysaccharides are mainly fucose-containing sulphated polysaccharides from algae and sea cucumbers. It follows that the hypoglycemic activity of marine fucosyl-polysaccharides is closely related to their structure, such as their sulfate group, monosaccharide composition, molecular weight and glycosidic bond type. However, the structure of marine fucosyl-polysaccharides and the mechanism of their hypoglycemic activity are not yet clear. Therefore, this review comprehensively covers the effects of marine fucosyl-polysaccharides sources, mechanisms and the structure-activity relationship on hypoglycemic activity. Moreover, the potential regulatory effects of fucosyl-polysaccharides on vascular complications caused by hyperglycemia are also summarized in this review. This review provides rationales for the activity study of marine fucosyl-polysaccharides and new insights into the high-value utilization of marine biological resources.
Collapse
Affiliation(s)
- Luying Tang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Shenyuan Cai
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| |
Collapse
|
5
|
Zhou R, Qian Y, Lei Z, Tang Y, Li Y. Production and characterization of exopolysaccharides from salinity-induced Auxenochlorella protothecoides and the analysis of anti-inflammatory activity. Int J Biol Macromol 2023; 240:124217. [PMID: 37001784 DOI: 10.1016/j.ijbiomac.2023.124217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
The set scenario of this work was to investigate the production, physicochemical characteristics, and anti-inflammatory activities of exopolysaccharides from salinity-induced Auxenochlorella protothecoides. The results demonstrated that 10 ‰ salinity manipulation endowed preferable exopolysaccharide production by A. protothecoides. Under this salinity stress, ACPEPS1A and ACPEPS2A were purified from exopolysaccharide production by anion chromatography and molecular exclusion chromatography. ACPEPS1A exhibited a molecular weight (Mw) of 132 kDa and mainly consisted of galactose. ACPEPS2A was a heteropolysaccharide with an Mw of 170 kDa and the main monosaccharides of galactose and rhamnose with separate molar percents of 42.41 % and 35.29 %, respectively. FTIR, 1H and 13C NMR supported that monosaccharide components of ACPEPS1A and ACPEPS2A possessed both α- and β-configuration pyranose rings. Further evidence indicated that ACPEPS1A and ACPEPS2A could effectively inhibit the inflammatory response in lipopolysaccharide (LPS) induced RAW264.7 cells by quenching inflammatory factor levels such as ROS, iNOS, TNF-α, and IL-6. The potential anti-inflammatory possibilities were that the monosaccharides of ACPEPS1A and ACPEPS2A possessed higher affinity with receptors on the macrophage surface than LPS and hampered LPS-induced inflammation. The findings of this work would favor innovative applications of exopolysaccharides from microalgae in complementary medicines or functional foods.
Collapse
|
6
|
Tsvetanova F, Yankov D. Bioactive Compounds from Red Microalgae with Therapeutic and Nutritional Value. Microorganisms 2022; 10:2290. [PMID: 36422361 PMCID: PMC9693049 DOI: 10.3390/microorganisms10112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
Red microalgae represent a natural reservoir of beneficial substances with applications in different industrial sectors. They are rich in natural biomolecules known for their antihypertensive, antioxidant, antimicrobial, antiviral, anti-inflammatory, antitumor, and anticoagulant activities. Many red microalgae are a source of vitamins, minerals, photochemicals, polyunsaturated fatty acids, and a wide spectrum of polysaccharides. The content of their valuable compounds and their activities have turned red microalgae into cellular factories of special interest in food, nutraceutical, and pharmaceutical industries. Like all microalgae, the red ones are superior to traditional crops for the aims of biotechnology as they are renewable sources widely available in great quantities and are easy to culture. Moreover, some of the most studied red microalgae are generally recognized as safe. This review summarizes the valuable biochemicals from red microalgae and highlights their health and nutritional benefits.
Collapse
|
7
|
Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. BIOLOGY 2022; 11:biology11081146. [PMID: 36009773 PMCID: PMC9405046 DOI: 10.3390/biology11081146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Microalgae-based biorefineries allow the simultaneous production of microalgae biomass enriched in a particular macromolecule and high-added and low-value products if a proper selection of the microalgae species and the cultivation conditions are adequate for the purpose. This review discusses the challenges and future trends related to microalgae-based biorefineries stressing the multi-product approach and the use of raw wastewater or pretreated wastewater to improve the cost-benefit ratio of biomass and products. Emphasis is given to the production of biomass enriched in carbohydrates. Microalgae-bioactive compounds as potential therapeutical and health promoters are also discussed. Future and novel trends following the circular economy strategy are also discussed. Abstract Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.
Collapse
|
8
|
Microalgae-derived polysaccharides: Potential building blocks for biomedical applications. World J Microbiol Biotechnol 2022; 38:150. [PMID: 35776270 DOI: 10.1007/s11274-022-03342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
In recent years, the increasing concern about human health well-being has strongly boosted the search for natural alternatives that can be used in different fields, especially in biomedicine. This has put microalgae-based products in evidence since they contain many bioactive compounds, of which polysaccharides are attractive due to the diverse physicochemical properties and new or improved biological roles they play. Polysaccharides from microalgae, specially exopolysaccharides, are critically important for market purposes because they can be used as anti-inflammatory, immunomodulatory, anti-glycemic, antitumor, antioxidant, anticoagulant, antilipidemic, antiviral, antibacterial, and antifungal agents. Therefore, to obtain higher productivity and competitiveness of these naturally available compounds, the cultivation parameters and the extraction/purification processes must be better optimized in order to bring perspectives for the exploitation of products in commercial and clinical practice. In this sense, the objective of the present review is to elucidate the potential biomedical applications of microalgae-derived polysaccharides. A closer look is taken at the main polysaccharides produced by microalgae, methods of extraction, purification and structural determination, biological activities and their applications, and current status.
Collapse
|
9
|
Biochemical Composition and Phycoerythrin Extraction from Red Microalgae: A Comparative Study Using Green Extraction Technologies. Processes (Basel) 2020. [DOI: 10.3390/pr8121628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Porphyridium spp. is a debated family that produces phycoerythrin (PE) for use in multiple industrial applications. We compared the differences in the biochemical composition and phycoerythrin yield of P. cruentum and P. purpureum by conventional and green extraction technologies. The protein content in P. cruentum was 42.90 ±1.84% w/w. The omega-3 fatty acid (FA) was highlighted by eicosapentaenoic acid (EPA, C20:5, ω-3, ~9.74 ± 0.27% FA) and arachidonic acid (ARA, C20:4, ω-6, ~18.02 ± 0.81% FA) represented the major omega-6 fatty acid. Conversely, P. purpureum demonstrated a higher lipid content (17.34 ± 1.35% w/w) and an FA profile more saturated in palmitic (C16:0, 29.01 ± 0.94% FA) and stearic acids (C18:0, 50.02 ± 1.72% FA). Maceration and freeze/thaw were the conventional methods, whereas microwave (MW) and ultrasound (US) served as green procedures for PE extraction under the factorial-design methodology. Aqueous solvents, extraction-time and power were the main factors in the statistical extraction designs based on Response-Surface Methodology (RSM). Overall, the PE extraction yield was higher (2-to 6-fold) in P. cruentum than in P. purpureum. Moreover, green technologies (US > MW) improved the PE recovery in comparison with the conventional methods for both of the microalgae. The maximum PE yield (33.85 mg/g) was obtained under optimal US conditions (15 min and buffer solvent (PBS)) for P. cruentum. Finally, we proved the biochemical differences between the red microalgae and ratified the advantages of using green extraction for PE because it reduced the processing times and costs and increased the economic and functional-applications of bioactive compounds in the industry.
Collapse
|