1
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Schutz GF, de Ávila Gonçalves S, Alves RMV, Vieira RP. A review of starch-based biocomposites reinforced with plant fibers. Int J Biol Macromol 2024; 261:129916. [PMID: 38311134 DOI: 10.1016/j.ijbiomac.2024.129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
Renewable and biodegradable resources have gained increasing attention as promising alternatives to synthetic plastics. Among the diverse raw materials employed in bioplastics production, starch emerges as an attractive, low-cost, and largely available source. However, the inherent properties of starch-based materials often limit their utility across various applications, necessitating strategic modifications to enhance their performance. A common approach to boost these materials involves incorporating natural fillers into biopolymer matrices. Incorporating natural fibers within starch matrices enables the development of biocomposites with improved properties while retaining their renewable and biodegradable characteristics. This review briefly addresses fundamental aspects of starch structure, obtention, and processing, as well as the main pre-treatments of natural fibers and processing methods currently applied to produce starch-based composites. It also highlights the most recent advances in this field, elucidates the effect of the incorporation of fibers on the biocomposite properties, and discusses the critical parameters affecting the synergic combination between starch and fibers.
Collapse
Affiliation(s)
- Guilherme Frey Schutz
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil.
| | - Sayeny de Ávila Gonçalves
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil
| | - Rosa Maria Vercelino Alves
- Instituto de Tecnologia de Alimentos (ITAL), Centro de Tecnologia de Embalagem (CETEA), Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química (FEQ), Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Porte E, Eristoff S, Agrawala A, Kramer-Bottiglio R. Characterization of Temperature and Humidity Dependence in Soft Elastomer Behavior. Soft Robot 2024; 11:118-130. [PMID: 37669451 PMCID: PMC10880277 DOI: 10.1089/soro.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Soft robots are predicted to operate well in unstructured environments due to their resilience to impacts, embodied intelligence, and potential ability to adapt to uncertain circumstances. Soft robots are of further interest for space and extraterrestrial missions, owing to their lightweight and compressible construction. Most soft robots in the literature to-date are made of elastomer bodies. However, limited data are available on the material characteristics of commonly used elastomers in extreme environments. In this study, we characterize four commonly used elastomers in the soft robotics literature-EcoFlex 00-30, Dragon Skin 10, Smooth-Sil 950, and Sylgard 184-in a temperature range of -40°C to 80°C and humidity range of 5-95% RH. We perform pull-to-failure, stiffness, and stress-relaxation tests. Furthermore, we perform a case study on soft elastomers used in stretchable capacitive sensors to evaluate the implications of the constituent material behavior on component performance. We find that all elastomers show temperature-dependent behavior, with typical stiffening of the material and a lower strain at failure with increasing temperature. The stress-relaxation response to temperature depends on the type of elastomer. Limited material effects are observed in response to different humidity conditions. The mechanical properties of the capacitive sensors are only dependent on temperature, but the measured capacitance shows changes related to both humidity and temperature changes, indicating that component-specific properties need to be considered in tandem with the mechanical design. This study provides essential insights into elastomer behavior for the design and successful operation of soft robots in varied environmental conditions.
Collapse
Affiliation(s)
- Elze Porte
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, USA
- Department of Mechanical Engineering, University College London, London, United Kingdom
- Department of Civil, Environmental & Geomatic Engineering, University College London, London, United Kingdom
| | - Sophia Eristoff
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, USA
| | - Anjali Agrawala
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, USA
| | - Rebecca Kramer-Bottiglio
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Diaz-Baca JA, Fatehi P. Production and characterization of starch-lignin based materials: A review. Biotechnol Adv 2024; 70:108281. [PMID: 37956796 DOI: 10.1016/j.biotechadv.2023.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
In their pristine state, starch and lignin are abundant and inexpensive natural polymers frequently considered green alternatives to oil-based and synthetic polymers. Despite their availability and owing to their physicochemical properties; starch and lignin are not often utilized in their pristine forms for high-performance applications. Generally, chemical and physical modifications transform them into starch- and lignin-based materials with broadened properties and functionality. In the last decade, the combination of starch and lignin for producing reinforced materials has gained significant attention. The reinforcing of starch matrices with lignin has received primary focus because of the enhanced water sensitivity, UV protection, and mechanical and thermal resistance that lignin introduces to starch-based materials. This review paper aims to assess starch-lignin materials' production and characterization technologies, highlighting their physicochemical properties, outcomes, challenges, and opportunities. First, this paper describes the current status, sources, and chemical modifications of lignin and starch. Next, the discussion is oriented toward starch-lignin materials and their production approaches, such as blends, composites, plasticized/crosslinked films, and coupled polymers. Special attention is given to the characterization methods of starch-lignin materials, focusing on their advantages, disadvantages, and expected outcomes. Finally, the challenges, opportunities, and future perspectives in developing starch-lignin materials, such as adhesives, coatings, films, and controlled delivery systems, are discussed.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
5
|
Jarensungnen C, Jetsrisuparb K, Phanthanawiboon S, Theerakulpisut S, Hiziroglu S, Knijnenburg JTN, Okhawilai M, Kasemsiri P. Development of eco-friendly antifungal and antibacterial adhesive derived from modified cassava starch waste/polyvinyl alcohol containing green synthesized nano-silver. Sci Rep 2023; 13:13355. [PMID: 37587152 PMCID: PMC10432455 DOI: 10.1038/s41598-023-40305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Environmentally friendly biopolymer-based wood adhesives are an inevitable trend of wood product development to replace the use of harmful formaldehyde-based adhesives. In this research, a new eco-friendly modified cassava starch waste-based adhesive via carboxymethylation (CMS), and blending with polyvinyl alcohol (PVA), tannic acid (TA) and green synthesized silver nanoparticles (AgNPs) was prepared. The effects of TA content on green synthesis of AgNPs (Ag-TA) and bio-adhesive nanocomposite properties were investigated. The use of 5 wt% TA for AgNPs synthesis (Ag-TA-5) resulted in a uniform particle size distribution. The plywood prepared with Ag-TA-5 provided the highest dry and wet shear strength at 1.95 ± 0.11 MPa and 1.38 ± 0.3 MPa, respectively. The water absorption and thickness swelling of this plywood remarkably decreased up to 10.99% and 6.79%, respectively. More importantly, the presence of Ag-TA in CMS/PVA adhesive successfully inhibited the invasion of mold and bacteria. Based on the cyclic delamination test, the adhesive bond durability of bio-adhesive containing Ag-TA-5 could meet the requirement of the AITC Test T110-2007 and was comparable to commercial adhesives. The added advantage of the prepared bio-adhesive was its synthesis from agro-waste products and possible economically viable production at industrial level.
Collapse
Affiliation(s)
- Chaloton Jarensungnen
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kaewta Jetsrisuparb
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supranee Phanthanawiboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Salim Hiziroglu
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Manunya Okhawilai
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok, 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornnapa Kasemsiri
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Yap YW, Mahmed N, Norizan MN, Abd Rahim SZ, Ahmad Salimi MN, Abdul Razak K, Mohamad IS, Abdullah MMAB, Mohamad Yunus MY. Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093601. [PMID: 37176484 PMCID: PMC10180389 DOI: 10.3390/ma16093601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.
Collapse
Affiliation(s)
- Yee Wen Yap
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Norsuria Mahmed
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Mohd Natashah Norizan
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Shayfull Zamree Abd Rahim
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Midhat Nabil Ahmad Salimi
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Kamrosni Abdul Razak
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Ili Salwani Mohamad
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Mohd Mustafa Al-Bakri Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | | |
Collapse
|
7
|
Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods 2023; 12:foods12030456. [PMID: 36765983 PMCID: PMC9914485 DOI: 10.3390/foods12030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Research on the utilization of food waste and by-products, such as peels, pomace, and seeds has increased in recent years. The high number of valuable compounds, such as starch, protein, and bioactive materials in waste and by-products from food manufacturing industries creates opportunities for the food packaging industry. These opportunities include the development of biodegradable plastics, functional compounds, active and intelligent packaging materials. However, the practicality, adaptability and relevance of up-scaling this lab-based research into an industrial scale are yet to be thoroughly examined. Therefore, in this review, recent research on the development of active and intelligent packaging materials, their applications on seafood and meat products, consumer acceptance, and recommendations to improve commercialization of these products were critically overviewed. This work addresses the challenges and potential in commercializing food waste and by-products for the food packaging industry. This information could be used as a guide for research on reducing food loss and waste while satisfying industrial demands.
Collapse
|
8
|
Emerging challenges on viability and commercialization of lignin in biobased polymers for food packaging: A review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Gallo‐García LA, Peron‐Schlosser B, Carpiné D, de Oliveira RM, Simões BM, Dias AP, Yamashita F, Spier MR. Feasibility of production starch/poly(butylene adipate‐
co
‐terephthalate) biodegradable materials with microalgal biomass by blown film extrusion. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Luis Alberto Gallo‐García
- Department of Chemical Engineering Graduate Program in Food Engineering, Federal University of Paraná (UFPR), Technology Sector Curitiba Paraná Brazil
| | - Bianca Peron‐Schlosser
- Department of Chemical Engineering Graduate Program in Food Engineering, Federal University of Paraná (UFPR), Technology Sector Curitiba Paraná Brazil
| | - Danielle Carpiné
- Department of Chemical Engineering Graduate Program in Food Engineering, Federal University of Paraná (UFPR), Technology Sector Curitiba Paraná Brazil
| | - Rodolfo Mesquita de Oliveira
- Department of Chemical Engineering Graduate Program in Food Engineering, Federal University of Paraná (UFPR), Technology Sector Curitiba Paraná Brazil
| | - Bruno Matheus Simões
- Department of Food Science and Technology, Center for Agricultural Sciences Graduate Program in Food Science, State University of Londrina (UEL) Londrina Paraná Brazil
| | - Adriana Passos Dias
- Department of Food Science and Technology, Center for Agricultural Sciences Graduate Program in Food Science, State University of Londrina (UEL) Londrina Paraná Brazil
| | - Fabio Yamashita
- Department of Food Science and Technology, Center for Agricultural Sciences Graduate Program in Food Science, State University of Londrina (UEL) Londrina Paraná Brazil
| | - Michele Rigon Spier
- Department of Chemical Engineering Graduate Program in Food Engineering, Federal University of Paraná (UFPR), Technology Sector Curitiba Paraná Brazil
| |
Collapse
|
10
|
Kanth S, Puttaiahgowda YM. CURRENT STATE AND FUTURE PERSPECTIVES OF STARCH DERIVATIVES AND THEIR BLENDS AS ANTIMICROBIAL MATERIALS. STARCH-STARKE 2022. [DOI: 10.1002/star.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shreya Kanth
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
11
|
Recent Advances in Development of Waste-Based Polymer Materials: A Review. Polymers (Basel) 2022; 14:polym14051050. [PMID: 35267873 PMCID: PMC8914771 DOI: 10.3390/polym14051050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Limited petroleum sources, suitable law regulations, and higher awareness within society has caused sustainable development of manufacturing and recycling of polymer blends and composites to be gaining increasing attention. This work aims to report recent advances in the manufacturing of environmentally friendly and low-cost polymer materials based on post-production and post-consumer wastes. Sustainable development of three groups of materials: wood polymer composites, polyurethane foams, and rubber recycling products were comprehensively described. Special attention was focused on examples of industrially applicable technologies developed in Poland over the last five years. Moreover, current trends and limitations in the future “green” development of waste-based polymer materials were also discussed.
Collapse
|
12
|
Mousavi SN, Nazarnezhad N, Asadpour G, Ramamoorthy SK, Zamani A. Ultrafine Friction Grinding of Lignin for Development of Starch Biocomposite Films. Polymers (Basel) 2021; 13:polym13122024. [PMID: 34205755 PMCID: PMC8235749 DOI: 10.3390/polym13122024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
The work demonstrates the utilization of fractionalized lignin from the black liquor of soda pulping for the development of starch-lignin biocomposites. The effect of ultrafine friction grinding on lignin particle size and properties of the biocomposites was investigated. Microscopic analysis and membrane filtration confirmed the reduction of lignin particle sizes down to micro and nanoparticles during the grinding process. Field Emission Scanning Electron Microscopy confirmed the compatibility between lignin particles and starch in the composites. The composite films were characterized for chemical structure, ultraviolet blocking, mechanical, and thermal properties. Additional grinding steps led to the reduction of large lignin particles and the produced particles were uniform. The formation of 7.7 to 11.3% lignin nanoparticles was confirmed in the two steps of membrane filtration. The highest tensile strain of the biocomposite films were 5.09 MPa, which displays a 40% improvement compared to starch films. Further, thermal stability of the composite films was better than that of starch films. The results from ultraviolet transmission showed that the composite films could act as an ultraviolet barrier in packaging applications.
Collapse
Affiliation(s)
- Seyedeh Najmeh Mousavi
- Department of Wood and Paper Science, Faculty of Natural Resources, Sari Agriculture Science and Natural Resources University, P.O. Box 578, Sari 4818168984, Iran; (S.N.M.); (N.N.); (G.A.)
- Swedish Center for Resources Recovery, University of Borås, 50190 Borås, Sweden;
| | - Noureddin Nazarnezhad
- Department of Wood and Paper Science, Faculty of Natural Resources, Sari Agriculture Science and Natural Resources University, P.O. Box 578, Sari 4818168984, Iran; (S.N.M.); (N.N.); (G.A.)
| | - Ghasem Asadpour
- Department of Wood and Paper Science, Faculty of Natural Resources, Sari Agriculture Science and Natural Resources University, P.O. Box 578, Sari 4818168984, Iran; (S.N.M.); (N.N.); (G.A.)
| | | | - Akram Zamani
- Swedish Center for Resources Recovery, University of Borås, 50190 Borås, Sweden;
- Correspondence:
| |
Collapse
|
13
|
Active Biodegradable Packaging for Foods Containing Baccharis dracunculifolia Leaf as Natural Antioxidant. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02641-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Lobo FCM, Franco AR, Fernandes EM, Reis RL. An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules 2021; 26:1749. [PMID: 33804712 PMCID: PMC8004007 DOI: 10.3390/molecules26061749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogenic microbes are a major source of health and environmental problems, mostly due to their easy proliferation on most surfaces. Currently, new classes of antimicrobial agents are under development to prevent microbial adhesion and biofilm formation. However, they are mostly from synthetic origin and present several disadvantages. The use of natural biopolymers such as cellulose, hemicellulose, and lignin, derived from lignocellulosic materials as antimicrobial agents has a promising potential. Lignocellulosic materials are one of the most abundant natural materials from renewable sources, and they present attractive characteristics, such as low density and biodegradability, are low-cost, high availability, and environmentally friendly. This review aims to provide new insights into the current usage and potential of lignocellulosic materials (biopolymer and fibers) as antimicrobial materials, highlighting their future application as a novel drug-free antimicrobial polymer.
Collapse
Affiliation(s)
- Flávia C. M. Lobo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Albina R. Franco
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
15
|
Biodegradable Poly(butylene adipate- co-terephthalate) Antibacterial Nanocomposites Reinforced with MgO Nanoparticles. Polymers (Basel) 2021; 13:polym13040507. [PMID: 33567689 PMCID: PMC7915994 DOI: 10.3390/polym13040507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Antibacterial packaging materials can reduce the microbial contamination of food surfaces. In this study, magnesium oxide (MgO) nanoparticles were synthesized and then coated with cetrimonium bromide (CTAB). CTAB-modified MgO (MgO@CTAB) was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis. Then, different loadings of MgO@CTAB were mixed with poly(butylene adipate-co-terephthalate) (PBAT) by melt compounding. The results showed that the addition of MgO@CTAB deteriorated the thermal stability of PBAT due to MgO serving as a catalyst to promote the thermal degradation of PBAT. In addition, MgO@CTAB could serve as a nucleating agent to improve the crystallinity of PBAT. With the optimal 3 wt% of MgO@CTAB, the tensile strength of PBAT/MgO@CTAB increased from 26.66 to 29.90 MPa, with a slight enhancement in elongation at break. SEM observations and dynamical rheological measurements revealed that aggregation occurred when the content of MgO@CTAB exceeded 5 wt%. The presence of MgO@CTAB endowed PBAT with antibacterial properties. The bacterial inhibition zone increased with the increasing content of MgO@CTAB. In addition, MgO@CTAB had a better antibacterial efficiency against Gram-positive bacterial S. aureus than Gram-negative bacterial E. coli.
Collapse
|