1
|
Muralidharan A, Subramani D, Arumugam D, Beena SP, Ramasamy S. Exploring the fascinating interplay of epigenetically modified DNA bases with two dimensional bare and P-doped Si 2BN and BN sheets for biosensing applications: A compelling DFT perspective. Int J Biol Macromol 2024; 282:137032. [PMID: 39486745 DOI: 10.1016/j.ijbiomac.2024.137032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Detecting epigenetically modified (EM) bases is crucial for disease detection, biosensing, and DNA sequencing. Two-dimensional P-doped Si2BN and BN sheets are used as sensing substrates in density functional theory (DFT) studies. Both the sheets are doped with a phosphorous atom at various atomic sites to examine the sheet's potential in detecting 5-hydroxymethylcytosine (5hmc), 5-methylcytosine (5mc), 7-methylguanine (7mg) and 8-oxoguanine (8oxg) bases. Doping of the P atom in the Si2BN sheet improves the adsorption energy (Ead) of Ab+5hmc (-107.16 kcal/mol) and Ab+5mc (-78.36 kcal/mol), As+7mg (-84.31 kcal/mol) in the gas and aqueous phase Ab+5hmc (-93.28 kcal/mol), An+7mg (-78.92 kcal/mol) and As+5mc (-77.52 kcal/mol) respectively. Standard deviation (θ) indicates that As complexes have high θ values ranging from 4.55 to 37.77, suggesting a high likelihood of distinguishing the bases. The P-doped BN complexes exhibit noticeable work functional shifting (Δϕ%) recommended that they can be used as ϕ-based sensors. Time-dependent DFT results suggest that when EM bases interact with P-doped Si2BN complexes, significant blue shifts (hypsochromic) and red shifts (bathochromic) are observed in the visible and near-infrared spectrum. Hence, the above finding suggests that P-doped Si2BN sheets are highly effective for sensing EM bases and are recommended for DNA/RNA sequencing applications.
Collapse
Affiliation(s)
- Akilesh Muralidharan
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Divyakaaviri Subramani
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Deepak Arumugam
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Shamini Pazhani Beena
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Shankar Ramasamy
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
2
|
Li R, Zeng X, Lv M, Zhang R, Zhang S, Zhang T, Yu X, Li C, Jin L, Zhao C. First principles studies on the adsorption of rare base-pairs on the surface of B/N atom doped γ-graphyne. Phys Chem Chem Phys 2024; 26:5558-5568. [PMID: 38284214 DOI: 10.1039/d3cp04726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Rare base-pairs consists of guanine (G) paired with rare bases, such as 5-methylcytosine (5-meCyt), 5-hydroxymethylcytosine (5-hmCyt), 5-carboxylcytosine (5-caCyt), and 5-formylcytosine (5-fCyt), have become the focus of epigenetic research because they can be used as markers to detect some chronic diseases and cancers. However, the correlation detection of these rare base-pairs is limited, which in turn limits the development of diagnostic tests and devices. Herein, the interaction of rare base-pairs adsorbed on pure and B/N-doped γ-graphyne (γ-GY) nanosheets was explored using the density functional theory. The calculated adsorption energy showed that the system of rare base-pairs on B-doped γ-GY is more stable than that on pure γ-GY or N-doped γ-GY. Translocation time values indicate that rare base-pairs can be successfully distinguished as the difference in their translocation times is very large for pure and B/N-doped γ-GY nanosheets. Meanwhile, sensing response values illustrated that pure and B-doped γ-GY are the best for G-5-hmCyt adsorption, while the N-doped γ-GY is the best for G-Cyt adsorption. The findings indicate that translocation times and sensing response can be used as detection indexes for pure and B/N doped γ-GY, which will provide a new way for experimental scientists to develop the biosensor components.
Collapse
Affiliation(s)
- Ruirui Li
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Xia Zeng
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Mengdan Lv
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Ruiying Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Chen Li
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
3
|
Muralidharan A, Subramani M, Subramani D, Ramasamy S. Inquest for the interaction of canonical and non-canonical DNA/RNA bases with ternary based 2D Si 2BN and doped Si 2BN for biosensing applications. J Biomol Struct Dyn 2023; 42:12446-12477. [PMID: 37855316 DOI: 10.1080/07391102.2023.2270685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Density functional theory (DFT) is invoked to investigate the interaction between the canonical (CN) and non-canonical (NC) bases with pristine Si2BN (Si2BN) and Phosphorous-doped Si2BN (P-dop-Si2BN) sheets. Inquest for the better sensing substrate is decided through the adsorption energy calculation which reveals that doping of phosphorous atom enhances the adsorption strength of AT (-83.74 kcal/mol) AU (-82.77 kcal/mol) and GC (-96.36 kcal/mol) base pairs. The CN and NC bases have higher adsorption energy than the previous reported values which concludes that the P-dop-Si2BN sheet will be optimal substrate to sense the bases. Meanwhile, the selected CN and NC (except hypoxanthine) bases interact with sheet in parallel manner which infers the π-π interaction with Si2BN and P-dop-Si2BN sheets. The energy gap variation (ΔEg%) of the P-dop-Si2BN complexes has a noticeable change, ranging from -24.75 to -197.28% which thrust the sensitivity of the P-dop-Si2BN sheet over the detection of CN and NC bases. The natural population analysis (NPA) and electron density difference map (EDDM) confirms that charges are transferred from CN and NC bases to Si2BN and P-dop-Si2BN sheet. The optical property of the P-dop-Si2BN complexes reveals that the noticeable red and blue shift in the visible and near-infrared regions (778 nm to 1143 nm) has been observed. Therefore, the above results conclude that the P-dop-Si2BN sheet plays a potential candidate to detect the CN and NC bases which contribute to the development of biosensors and DNA/RNA sequencing devices.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akilesh Muralidharan
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Mohanapriya Subramani
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Divyakaaviri Subramani
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Shankar Ramasamy
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
4
|
Saravanan V, Rajamani A, Ramasamy S, Baazeem A, Upadhyaya IR. Epigenetically modified nucleobases (5hmc, 5fc, and 5caC) interaction with boron and nitrogen doped porous graphene (B/N-pGr) as promising materials for biosensing application: A density functional theory calculations. ENVIRONMENTAL RESEARCH 2021; 197:111133. [PMID: 33878317 DOI: 10.1016/j.envres.2021.111133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
In this present work, porous graphene (pGr), boron (B-pGr), and nitrogen (N-pGr) doped porous sheets are explored as a bio-sensor device for sensing modified nucleobases (MBs) in cancer therapy using density functional theory (DFT). The obtained geometrical, energetic and electronic properties revealed that the B-pGr is highly reactive and it adsorbs MBs better than the pGr and N-pGr, because B atom holds empty p-orbitals which easily interact with partially filled p-orbital of N and O atom. Thus, the adsorption energies of 5hmc, 5caC, and 5fc on B-pGr are high rather than the pGr and N-pGr. The corresponding adsorption energies are -96.074, -77.0, and -60.721 kcal/mol for 5hmc, 5caC, and 5fc respectively. The positive signature of ΔN values (0.005 eV, 0.076 eV, and 0.047 in MBs on pGr and 0.171 eV, 0.252 eV and 0.205 eV in MBs on N-pGr) are obtained at MBs on pGr and N-pGr complex. The negative ΔN values (-0.141 eV, -0.032 eV, and -0.061 eV in MBs on B-pGr) are obtained at MBs of B-pGr. The calculated absorption values shows that the B-pGr is strongly adsorbed MBs at 342 nm. The obtained results exhibit that the B-pGr sheet retains significant therapeutic potential as a bio-sensing application for cancer therapy.
Collapse
Affiliation(s)
- Vinnarasi Saravanan
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Akilan Rajamani
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Shankar Ramasamy
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Indra Raj Upadhyaya
- Department of Chemistry Education, Chungbuk National University, Chungcheongbuk-do, 28644, Republic of Korea
| |
Collapse
|
5
|
Subramani M, Saravanan V, Theerthagiri J, Subramaniam V, Pazhanivel T, Ramasamy S, Manickam S. Kinetics and degradation of camphene with OH radicals and its subsequent fate under the atmospheric O 2 and NO radicals - A theoretical study. CHEMOSPHERE 2021; 267:129250. [PMID: 33338722 DOI: 10.1016/j.chemosphere.2020.129250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Camphene (C10H16) is an abundant bicyclic monoterpene in the atmosphere which can be easily oxidized by the atmospheric OH radicals. In this study, the oxidation of camphene with OH radicals and its subsequent reactions are studied using quantum chemical method. Thermochemical parameters show that the addition of OH radicals to the terminal C10 atom of camphene is thermodynamically more stable than the addition of OH radicals to the internal C7 atom of camphene. The reaction force profile demonstrates that the formation of two hydroxyalkoxy radical intermediates (I1a and I2a) are mainly dominated by the structural rearrangement with 94.28% and 99.43% of the total energy, respectively. The overall reaction rate coefficient for camphene + OH radical is 2.1⨯10-12 cm3 molecule-1 sec-1 at 298 K and 1 atm which agree well with the experimental reaction rate coefficient (5.58⨯10-11 cm3 molecule-1 sec-1) for the reaction of camphene with OH radical. The branching ratio for the addition of OH radical to the C10 position of camphene is 68.32%, and the C7 position of camphene is 31.68% at 298 K. The calculated lifetime reveals that camphene degrades quickly in the atmosphere owing to its short lifetime of 5.3 h. The obtained mechanistic and kinetic results reveal that the addition of OH radical to the C10 position is more dominant than the C7 position, and it is more stable and spontaneous in the atmosphere.
Collapse
Affiliation(s)
| | - Vinnarasi Saravanan
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Jayaraman Theerthagiri
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | | | - Thangavelu Pazhanivel
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, Tamilnadu, 636011, India
| | - Shankar Ramasamy
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
6
|
Cao B, Li Y, Zhou Q, Li B, Su X, Yin H, Shi Y. Synergistically improving myricetin ESIPT and antioxidant activity via dexterously trimming atomic electronegativity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Cortés-Arriagada D, Cid-Mora F. Exploring the adsorption properties of doped phosphorene for the uptake of DNA nucleobases. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Cortés-Arriagada D. Intermolecular driving forces on the adsorption of DNA/RNA nucleobases to graphene and phosphorene: An atomistic perspective from DFT calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
|
10
|
Exploring two-dimensional graphene and boron-nitride as potential nanocarriers for cytarabine and clofarabine anti-cancer drugs. Comput Biol Chem 2020; 88:107334. [PMID: 32759050 DOI: 10.1016/j.compbiolchem.2020.107334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Development in two-dimensional (2D) drug-delivery materials have quickly translated into biological and pharmacological fields. In this present work, pristine graphene (PG) and hexagonal boron nitride (h-BN) sheets are explored as a drug carrier for cytarabine (CYT) and clofarabine (CLF) anti-cancer drugs using density functional theory (DFT). The obtained geometrical, energetic and electronic properties revealed that the PG sheet is more reactive and it adsorbs CYT and CLF anti-cancer drugs better than the h-BN sheet. The adsorption energies of CYT and CLF on PG sheet is -24.293 and -23.308 kcal/mol respectively, this is due to the delocalized electrons present in the PG sheet. The flow of electron direction between anti-cancer drugs and 2D sheet are calculated by ΔN, ΔEA(B), and ΔEB(A) parameters and Natural bond orbital analysis (NBO). The electronic and optical properties are calculated to understand the chemical reactivity and stability of the complex systems. The obtained results exhibit that the PG sheet retains significant therapeutic potential as a drug delivery vehicle for a drug molecule to treat cancer therapy.
Collapse
|