1
|
He X, Wang Y, Zhang W. New insight into amino acids on the structure and rheological properties of rice starch via ultra-high pressure processing. Food Chem 2025; 466:142201. [PMID: 39612842 DOI: 10.1016/j.foodchem.2024.142201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
There is a lack of research on the effects of amino acid starch interaction on the functional properties of products during Ultra-high pressure (UHP) processing. The functional properties of rice starch with the addition of Glu, Ala and Lys were studied under UHP processing. At 400 MPa, all amino acids reduced G' and weakened the gel strength, and the gel strength order was as follows: Control > Ala > Glu > Lys. At 500 MPa, Glu increased G' and G″, and enhanced the strength of the gel, but the addition of Lys had the opposite effects, the gel strength order was as follows: Glu > Ala > Control > Lys. With the increased of treatment pressure and time, the G' and G″ of all samples treated at 500 MPa decreased, and the gel strength weakened. This study will expand the application scope of rice starch as food gelling agents and functional food.
Collapse
Affiliation(s)
- Xinhua He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Gong Y, Xiao S, Yao Z, Deng H, Chen X, Yang T. Factors and modification techniques enhancing starch gel structure and their applications in foods:A review. Food Chem X 2024; 24:102045. [PMID: 39691538 PMCID: PMC11650135 DOI: 10.1016/j.fochx.2024.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
The formation of starch gel structure results from the gelatinization and retrogradation of starch in aqueous solutions, which plays a crucial role in determining the quality and functional properties of starchy foods. The gelation ability of many native starches is limited and their structure is weak, which restricts their application. Therefore, how to enhance the gel structure of starch is of great significance to food science and industry. In this paper, the mechanism of starch gel formation was reviewed, and the research progress of starch composition, retrogradation conditions, food composition and modification methods were reviewed. Meanwhile, the applications of enhanced starch gel structures in food quality, nutrition, packaging, and 3D printing were discussed. This review provides valuable references for researchers and producers to develop high-quality and nutritious starch-based foods and further expand the applications of starches.
Collapse
Affiliation(s)
- Yongqiang Gong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuzhi Xiao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zihan Yao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongjie Deng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuan Chen
- School of Architecture and Art, Central South University, Changsha 410004, China
| | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Duan X, Zhang T, Liu Q, Zhang L, Liu W, Zhao R, Hu H. Effect of Freezing Temperature on the Thermal, Rheological, and Gelatinization Properties of Freeze-Thaw-Dehydrated Potato Powder. Gels 2024; 10:744. [PMID: 39590099 PMCID: PMC11593846 DOI: 10.3390/gels10110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
To promote the application of freeze-thaw-dehydrated (FTD) potatoes and their gels, this study aimed to investigate the effects of freezing temperature on the physicochemical and gel properties of FTD potato powder and their correlation. The results revealed that, as the freezing temperature decreased, the solubility exhibited an overall downwards trend resulting from soluble solids and amylose liberation. Owing to the better cell integrity at -20 °C, the solubility was greater than that of the other treatment groups. In contrast, the trough viscosity and melting enthalpy increased, and the final viscosity, and setback first increased but then decreased. Regarding the properties of the FTD potato powder gel, the storage modulus, loss modulus, hardness, adhesiveness, chewiness, and consistency first increased but then decreased with decreasing freezing temperature. At a moderate freezing temperature (-20 °C), the solubility and stability of the FTD potato powder were well maintained, and the final viscosity, setback, and hardness reached their highest values. Correlation analysis revealed that, with decreasing freezing temperature, the amount of FTD potato powder initially increased, followed by a decrease in the final viscosity and setback. This trend was positively correlated with the hardness of the FTD potato gel (r = 0.98, r = 0.93).
Collapse
Affiliation(s)
| | | | | | | | | | - Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
4
|
Oh H, Nam JH, Park BR, Kim KM, Kim HY, Cho YS. Physicochemical and rheological properties of ultrasonic-assisted pregelatinized rice flour. ULTRASONICS SONOCHEMISTRY 2024; 109:106977. [PMID: 39088989 PMCID: PMC11341936 DOI: 10.1016/j.ultsonch.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
This study evaluated the physical and rheological properties of whole rice flour treated for different sonication times (0-15 min). Ultrasonication reduces the particle size of rice flour and improves its solubility. Viscosity tests using RVA and steady shear showed a notable decrease in the viscosity of the rehydrated pregelatinized rice flour. Although no unusual patterns were observed in the XRD analysis, the FT-IR and microstructure morphology findings suggest that ultrasonication led to structural changes in the rice flour. Overall, the study indicates that ultrasonication is a practical and clean method for producing plant-based drinks from rice flour, which could expand its limited applications in the beverage industry.
Collapse
Affiliation(s)
- Hyeonbin Oh
- Department of Agro-Food Resources, National Institute of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - Jung-Hyun Nam
- Department of Agro-Food Resources, National Institute of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - Bo-Ram Park
- Department of Agro-Food Resources, National Institute of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - Kyung Mi Kim
- Department of Agro-Food Resources, National Institute of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - Ha Yun Kim
- Department of Agro-Food Resources, National Institute of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - Yong Sik Cho
- Department of Agro-Food Resources, National Institute of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea.
| |
Collapse
|
5
|
Ren X, Zhang H, Lv M, Fan H, Liu L, Wang B, Hu X, Shi Y, Yang C, Chen F, Sun Y. Technology for Blending Recombined Flour: Substitution of Extruded Rice Flour, Quantity of Addition, and Impact on Dough. Foods 2024; 13:2929. [PMID: 39335858 PMCID: PMC11431399 DOI: 10.3390/foods13182929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In a previous study, rice bread was prepared using a combination of rice-wheat mixed flour. To investigate the impact of the partial adoption of extruded rice flour (ERF) on mixed flour (MF) and mixed dough (MD), the effects of adding ERF on the pasting, mixing characteristics, texture, and water retention of the MF and MD were examined by a rapid visco analyzer (RVA), Mixolab, texture profile analysis (TPA), and a low-field nuclear magnetic resonance analyzer (LF-NMR). The PV, TV, BD, FV, and SV of the MF declined as the incorporated amount of ERF increased. There was no significant difference in the PT at the 5-15% addition level (p < 0.05), but it showed an increasing trend at the 20-30% level (p < 0.05). The incorporation of ERF led to a significant increase in the water absorption (WA) of the MD, while the DT, ST, C2, C3, C4, and C5 exhibited a declining trend. The texture analysis revealed a significant decrease in the dough hardness with the addition of ERF, with a 55% reduction in the hardness of the 30% improved mixed dough (IMD), and the cohesiveness increased significantly (p < 0.05). The IMD was mainly composed of weakly bound water. The content of weakly bound water increased with the ERF amount.
Collapse
Affiliation(s)
- Xuyang Ren
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Huining Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Mingshou Lv
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Hongchen Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofeng Hu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yanguo Shi
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunhua Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Fenglian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ying Sun
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
6
|
Gao M, Jia J, Zhang C, Liu Y, Dou B, Zhang N. Structure, properties, and resistant starch content of modified rice flour prepared using dual hydrothermal treatment. Int J Biol Macromol 2024; 262:130050. [PMID: 38346627 DOI: 10.1016/j.ijbiomac.2024.130050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
In this study, modified rice flour with high resistant starch (RS) content was prepared by dual hydrothermal treatment, which combined the heat-moisture treatment with the pressure-heat treatment method. The effects of dual hydrothermal treatment on the structure and properties of modified rice flour and their relationship with RS content were further discussed. The results showed that the RS content of modified rice flour was higher than that of rice flour (RF), and dual hydrothermal treatment was more effective than single hydrothermal treatment. Adhesion and aggregation occurred between the particles of modified rice flour. Both crystallinity and short-range ordering were increased in modified rice flour compared to RF. Moreover, the modified rice flour of dual hydrothermal treatment had higher crystallinity and a more ordered short-range structure of starch, which improved RS content to a certain extent. Compared to single hydrothermal treatment, the modified rice flour of dual hydrothermal treatment had a lower viscoelasticity and a better thermal stability. Both RF and modified rice flour gels were composed mainly of free water, with minimal amounts of bound and immobile water. The study may provide a reference for the production and application of modified rice flour.
Collapse
Affiliation(s)
- Man Gao
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Jianhui Jia
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Chujia Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ying Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Boxin Dou
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
7
|
Chen L, Tan H, Feng R, Ma L, Zhang Y, Yi H, Yin L, Liu W, Hu L, Zhu W. Effect of modified starches on the quality of skins of glutinous rice dumplings. Int J Biol Macromol 2023; 253:127139. [PMID: 37793518 DOI: 10.1016/j.ijbiomac.2023.127139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
This study aimed to investigate the influence of modified starches on the quality of skins of glutinous rice dumplings (SGRDs), including changes in textural properties, pasting parameters, microstructure, color, transparency, and sensory quality. The results showed that the addition of a single acetylated-modified cassava or potato starch or composite modified cassava and potato starch in a ratio of 2:1 can improve the quality of SGRDs. The springiness and lightness of SGRDs increased, and the transparency increased from 3.22 % to 6.18 %. The cooked samples had delicate mouth-feel, uniform color and luster, good transparency, no depression, and low weight loss and did not stick to the teeth. Moreover, the total consumer acceptability score increased from 60.67 to 89.33, indicating that these products were widely accepted by consumers. However, the addition of hydroxypropyl-modified cassava starch or its composite with other two modified starches had no apparent effect on the quality of SGRDs. In conclusion, the quality of SGRDs were significantly improved by the addition of single or composite acetylated-modified starches. This study provides a theoretical basis for improving the quality of SGRDs.
Collapse
Affiliation(s)
- Lu Chen
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin 643000, China
| | - Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ruizhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin 643000, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Haitao Yi
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China
| | - Liguo Yin
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin 643000, China
| | - Wenwen Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin 643000, China
| | - Lianqing Hu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin 643000, China
| | - Wenyou Zhu
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin 643000, China.
| |
Collapse
|
8
|
Kim EA, Lee YR, Lee EH, Jeong HM, Kang BS, Kim BH, Park SJ, Shim JH. Development and applications of enzymatic modified starch with high water solubility providing a continuous supply of glucose. Int J Biol Macromol 2023; 250:126107. [PMID: 37536417 DOI: 10.1016/j.ijbiomac.2023.126107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Amylopectin clusters (APCs) are produced by cyclodextrin glucanotransferase (EC 2.4.1.19). Their solubility rate in aqueous solution was found to be 16.7 %. The weight-average molecular weight of APCs is ∼105 Da, as determined by multiangle laser light scattering analysis. Side chain length analysis indicated that the relative proportions of side chains with a degree of polymerization in the ranges of 2-8 and 25-50 decreased and increased, respectively, during preparation of APCs. In the exercise experiment, the blood glucose level of rats was higher in the APC-treated group than in the groups treated with commercial carbohydrate supplement (CCD) and glucose. In the forced swimming test, the swimming time in the APC and CCD groups increased by 22.6 % and 31.1 %, respectively, compared with the glucose administration group. The insulin levels were also similar between the APC and CCD groups. However, the glycogen levels in the liver and muscles of mice were significantly higher in the APC group than control group. These results suggest that APCs could potentially enhance endurance when added to sports drinks.
Collapse
Affiliation(s)
- Eun-A Kim
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gangwon-do 24252, Republic of Korea.
| | - Ye-Rim Lee
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gangwon-do 24252, Republic of Korea.
| | - Eun-Hyeong Lee
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gangwon-do 24252, Republic of Korea.
| | - Hyun-Mo Jeong
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gangwon-do 24252, Republic of Korea.
| | - Byung Sik Kang
- Medience Co. Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea.
| | - Byung-Hak Kim
- Medience Co. Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea.
| | - Sang Jae Park
- Medience Co. Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gangwon-do 24252, Republic of Korea.
| |
Collapse
|
9
|
Formation mechanism of starch nanocrystals from waxy rice starch and their separation by differential centrifugation. Food Chem 2023; 412:135536. [PMID: 36708668 DOI: 10.1016/j.foodchem.2023.135536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Starch nanocrystals (SNCs) were prepared from waxy rice starch via sulfuric acid hydrolysis. The objective focused on the following: i) the hydrolysis kinetics and structural properties of SNCs; ii) the effects of differential centrifugation on the yield and size distribution of SNCs. The hydrolysis was divided into a rapid hydrolysis stage in the initial two days and a slow hydrolysis stage after two days. During the two-day hydrolysis, the average diameter of SNCs reached 244 nm. After two days of hydrolysis, the degree of crystallinity, crystallite size, and melting temperature and enthalpy increased. The proportion of A-branched chains decreased, whereas the proportion of B1-branched chains and molecular weight did not change considerably. Thus, the reaction in the slow hydrolysis stage could be considered as the surface modification and gradual release of SNCs. Furthermore, SNCs with a small size and high charge density could be used for differential centrifugation.
Collapse
|
10
|
Wang D, Fan H, Wang B, Liu L, Shi Y, Zhang N. Effects of lactic acid bacteria fermentation on the physicochemical and structural characteristics of starch in blends of glutinous and japonica rice. J Food Sci 2023; 88:1623-1639. [PMID: 36880577 DOI: 10.1111/1750-3841.16524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
In this study, the effects of lactic acid bacteria (LAB) fermentation on the physicochemical and structural characteristics of mixed starches in blends of glutinous and japonica rice were investigated. Five starter cultures improved in varying degrees the hydration ability, transparency, and freeze-thaw stability of the mixed starches. Mixed starch I, prepared by fermentation of Lactobacillus acidophilus HSP001, exhibited optimal water-holding capacity, solubility, and swelling power. In comparison, mixed starches V and III involved fermentation of L. acidophilus HSP001 and Latilactobacillus sakei HSP002, using ratios of 2:1 and 1:1 to achieve higher transparency and freeze-thaw stability, respectively. The LAB-fermented, mixed starches exhibited excellent pasting properties due to their high peak viscosities and low setback values. Moreover, the viscoelasticity of mixed starches III-V, prepared by compound fermentation of L. acidophilus HSP001 and L. sakei HSP002 in ratios of 1:1, 1:2, and 2:1, respectively, proved superior to their single strain fermentation counterparts. Meanwhile, LAB fermentation resulted in reduced gelatinization enthalpy, relative crystallinity, and short-range ordered degree. Thus, the effects of five LAB starter cultures on mixed starches were inconsistent, but these results provide a theoretical basis for the application of mixed starches. PRACTICAL APPLICATION: Lactic acid bacteria was used to ferment blends of glutinous and japonica rice. Fermented mixed starch had better hydration, transparency, and freeze-thaw stability. Fermented mixed starch exhibited nice pasting properties and viscoelasticity. LAB fermentation corroded starch granules, leading to the decrease of ΔH. Relative crystallinity and short-range order of fermented mixed starch decreased.
Collapse
Affiliation(s)
- Dengyu Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Harbin University of Commerce, Harbin, China.,College of Food Engineering, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Hongchen Fan
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Harbin University of Commerce, Harbin, China.,College of Food Engineering, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Bing Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Harbin University of Commerce, Harbin, China.,College of Food Engineering, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Linlin Liu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Harbin University of Commerce, Harbin, China.,College of Food Engineering, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Yanguo Shi
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Harbin University of Commerce, Harbin, China.,College of Food Engineering, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Harbin University of Commerce, Harbin, China.,College of Food Engineering, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| |
Collapse
|
11
|
Incorporating acetylated starch regulates the structure and sol-gel performance of wheat starch-based binary system. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
12
|
Cheeyattil S, Rajan A, Radhakrishnan M. Curcumin-infused xerogel-based nutraceutical development and its 4D shape-shifting behavior. J Food Sci 2023; 88:810-824. [PMID: 36579836 DOI: 10.1111/1750-3841.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
Cereal-based functional foods with shape-changing (four-dimensional [4D]) properties is a novel approach in the current scenario. The main objective of the research is to develop a bioactive compound incorporated in flat two-dimensional xerogel and its hydromorphic three-dimensional shape transformation. The spray-dried curcumin at three different concentrations was incorporated with hydrogel (wheat-barley flour 8%), and flat xerogel was formed by sessile drop drying at 30°C and 78% relative humidity. The top smooth and rough bottom surface of xerogel provided anisotropic swelling properties during the shape transformation. The antimicrobial and antioxidant properties of xerogel were examined, and the retention of curcumin during the shape transformation was also examined during the research. The porous structure of barley-wheat xerogel has enhanced the incorporation of water-insoluble bioactive components like curcumin. The diffusion properties of curcumin xerogel provided an antimicrobial effect against gram-negative pathogenic bacteria. The optimum temperature (70°C) during the shape-shifting provides the retention of bioavailability and functional properties of curcumin. The work describes the opportunities for developing xerogel incorporated with more bioactive and functional components and study its stability and hydromorphic 4D shape-changing behavior. PRACTICAL APPLICATION: Xerogel is a good carrier for different bioactive components. The development of curcumin-infused biodegrade, non-toxic, and cereal-based xerogel provide an excellent opportunity for the delivery of curcumin in a cost-effective way. The shape-changing easily consumable forms of xerogel will attract more consumers, and it retains the bioavailability of infused compounds during processing.
Collapse
Affiliation(s)
| | - Anbarasan Rajan
- Centre of Excellence in Nonthermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM-T), Thanjavur, India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM-T), Thanjavur, India
| |
Collapse
|
13
|
Gong Y, Gu T, Zhang T, Li S, Yu Z, Zheng M, Xiao Y, Zhou Y. Effects of Hydroxypropyl and Lactate Esterified Glutinous Rice Starch on Wheat Starch Gel Construction. Gels 2022; 8:714. [PMID: 36354621 PMCID: PMC9690041 DOI: 10.3390/gels8110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
An investigation was conducted into the impacts of hydroxypropyl glutinous rice starch (HPGRS) and lactate-esterified glutinous rice starch (LAEGRS) on a dilute solution and gel properties of wheat starch (WS) at different proportions (0%, 1%, 3%, 5%, and 10%). The results of dilute solution viscosity showed that hydroxypropyl treatment of glutinous rice starch (GRS) could promote the extension of GRS chains, while lactate esterification led to the hydrophobic association of GRS chains, and the starch chains curled inward. Different HPGRS: WS and LAEGRS: WS ratios, β > 0 and ∆b > 0, showed HPGRS and LAEGRS produced attractive forces with WS and formed a uniform gel structure. Compared with WS gel, HPGRS, and LAEGRS could effectively delay the short-term aging of WS gels, and LAEGRS had a more significant effect. HPGRS increased the pasting viscosity, viscoelasticity, and springiness of WS gels, reduced the free water content, and established a tighter gel network structure, while LAEGRS had an opposite trend on WS. In conclusion, HPGRS was suitable for WS-based foods with stable gel network structure and high water retention requirements, and LAEGRS was suitable for WS-based foods with low viscosity and loose gel structure.
Collapse
Affiliation(s)
- Yongqiang Gong
- Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tingting Gu
- Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Zhang
- Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Zhenyu Yu
- Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
14
|
Wang H, Li Z, Wang L, Cui SW, Qiu J. Different thermal treatments of highland barley kernel affect its flour physicochemical properties by structural modification of starch and protein. Food Chem 2022; 387:132835. [DOI: 10.1016/j.foodchem.2022.132835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 01/17/2023]
|
15
|
Cui C, Jia Y, Sun Q, Yu M, Ji N, Dai L, Wang Y, Qin Y, Xiong L, Sun Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr Polym 2022; 291:119624. [DOI: 10.1016/j.carbpol.2022.119624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
|
16
|
Enhancement of the selected physico-chemical properties of steamed rice cake by the application of acetylated distarch adipate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Zhang NN, Yang S, Kuang YY, Shan CS, Lu QQ, Chen ZG. Effects of different modified starches and gums on the physicochemical, functional, and microstructural properties of tapioca pearls. Int J Biol Macromol 2022; 206:222-231. [PMID: 35231533 DOI: 10.1016/j.ijbiomac.2022.02.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/29/2022] [Accepted: 02/24/2022] [Indexed: 11/05/2022]
Abstract
The effects of different modified starch and gums on the physicochemical, functional, and microstructural properties of tapioca pearls were investigated. The addition of starch acetate (SA) and carboxymethylcellulose (CMC) improved the springiness, hardness, cooking properties, and overall acceptability of pearls. Samples added with CMC presented higher peak viscosities, breakdown viscosities, onset gelatinization temperature, and lower enthalpy of gelatinization values compared to control pearls. Furthermore, Rheology and LF-NMR results indicated that all five kinds of modifiers promoted the formation of tighter network structures in products. SEM showed that the addition of SA and hydroxypropyl distarch phosphate (HDP) could fill the voids in the internal gel network of the pearls, thus promoting the formation of a continuous phase network. This study proved SA, HDP, and CMC as modifiers could have tremendous potential to improve the quality of pearls before and after cooking.
Collapse
Affiliation(s)
- Nian-Nian Zhang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sha Yang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yu-Yu Kuang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chang-Song Shan
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qin-Qin Lu
- Jiangsu Marine Fisheries Res Inst, Nantong 226007, Jiangsu, PR China
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Effect of polyphenolic compounds on starch retrogradation and in vitro starch digestibility of rice cakes under different storage temperatures. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09701-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Boopathy B, Stephen J, Rajan A, Radhakrishnan M. Evaluation of temperature and concentration on the development of rice hydrogel and 2D xerogel. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bhavadharini Boopathy
- Associate Professor and Head, Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology Thanjavur India
| | - Jaspin Stephen
- Associate Professor and Head, Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology Thanjavur India
| | - Anbarasan Rajan
- Associate Professor and Head, Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology Thanjavur India
| | - Mahendran Radhakrishnan
- Associate Professor and Head, Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology Thanjavur India
| |
Collapse
|
20
|
Lapčíková B, Lapčík L, Valenta T, Majar P, Ondroušková K. Effect of the rice flour particle size and variety type on water holding capacity and water diffusivity in aqueous dispersions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Endogenous alpha-amylase explains the different pasting and rheological properties of wet and dry milled glutinous rice flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zheng Y, Ou Y, Zhang C, Zhang Y, Zheng B, Zeng S, Zeng H. The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch. Int J Biol Macromol 2021; 175:49-57. [PMID: 33524480 DOI: 10.1016/j.ijbiomac.2021.01.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
In order to investigate the effects of exogenous V-type starch on the structural properties and dispersion stability of lotus seed starch after autoclave treatment, the crystal structure, molecular structure, and dispersion stability were analyzed and discussed, as well as compared with exogenous A-type and B-type starches. Analysis of structural properties indicated that the addition of different crystal nuclei led the crystallization of disordered helices to a specific direction. The B- and V-type starch addition increased the crystallinities of starch and enhanced the ordered arrangement of disordered helices, whereas A-type starch had no significant positive influence on the stability of starch system. The microstructure observation showed that A- and B-type starch addition led to a rough and porous morphology of starch particles; the presence of V-type starch retarded the agglomeration and retrogradation of starch after autoclaving. Analysis of contact angle and dispersion stability revealed that the addition of various exogenous starch increased the contact angle of starch particles in different extent, suggesting the enhancement of hydrophobicity. But B-type starch addition resulted in the poor dispersion stability compared to A-type starch, instead V-type starch addition improved the dispersion stability of starch in aqueous solution, allowing the particles to stay dispersed for 141.12 ± 6.52 min. These results provided a theoretical basis for the effects of exogenous type starch on original starch properties, and revealed the potential of V-type starch as dispersion stabilizer.
Collapse
Affiliation(s)
- Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chong Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
23
|
A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|