1
|
He X, Wang Y, Zhou L, Gunness P, Hunt W, Solah VA, Sun Q. The effects of lecithin on the complexation between pea starch and aliphatic alcohols in aqueous medium. Food Chem 2025; 475:143364. [PMID: 39956070 DOI: 10.1016/j.foodchem.2025.143364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/29/2024] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
This study investigated the effect of lecithin on the complexation of pea starch with aliphatic alcohols (C10-C18). Alcohols (C10-C16) produced cooling-stage viscosity peaks, while 1-octadecanol only showed increased final viscosity in ternary systems with lecithin during the Rapid viscosity analyzer program. Differential scanning calorimetry and complex index analyses revealed enhanced complex formation, with enthalpy changes nearly doubled compared to corresponding binary systems. X-ray diffraction showed increased V-type crystallinity (3.88-12.22 % to 8.36-21.10 %), while Fourier transform infrared and Raman spectroscopies confirmed improved short-range molecular order. Enzymatic hydrolysis demonstrated reduced digestibility, with 35.86 % resistant starch content in PS-10-LE after cooking. SEM and rheology studies indicated that lecithin addition caused network collapse and weaker gelation, likely due to more complex formation. These findings validated lecithin's role in enhancing starch-alcohol complexation and highlighted its potential for developing resistant starches with guests and encapsulating different flavor compounds, offering promising applications in food science.
Collapse
Affiliation(s)
- Xiaoyang He
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Yifan Wang
- Qingdao Special Food Research Institution, Qingdao 266109, China
| | - Liyang Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institution, Qingdao 266109, China
| | - Purnima Gunness
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Wendy Hunt
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Vicky A Solah
- School of Medical, Molecular & Forensic Sciences, College of Environmental & Life Sciences, Murdoch 6150, Western Australia, Australia
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institution, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhou B, Chen N, Wu Y, Peng X, Han K, Chen Z, Xu M, Liu X. Starch-lipid complexes and their application: A review. Int J Biol Macromol 2025; 310:142928. [PMID: 40210070 DOI: 10.1016/j.ijbiomac.2025.142928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
The starch-lipid complexes have recently attracted extensive interest due to their excellent properties, such as the decrease of digestibility and the inhibition of starch gelatinization and retrogradation. The review discussed the formation, structure, functionalities and preparation methods of starch-lipid complexes, and most importantly, their application. The starch-lipid complex is classified as a new type of resistant starch-RS5, which can reduce postprandial blood glucose response and regulate human gut health. Over the past few years, starch-lipid complexes have been increasingly reported for applications in food additives, fat substitutes and carriers of nutrients and medicine, regulation of intestinal flora and production of food packaging films. A comprehensive review of applications of starch-lipid complexes is of great importance for understanding and expanding the application of complexes. But the regulatory mechanism of starch-lipid complexes on food quality, food packaging films and intestinal flora is still unclear, which deserves further study in the future. Targeted medicine delivery using starch-lipid complexes may be also a promising and challenging direction in the future.
Collapse
Affiliation(s)
- Binran Zhou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Ning Chen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Yuewei Wu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Xiangyuan Peng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Kaijie Han
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Zengren Chen
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Mengjie Xu
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China
| | - Xia Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China.
| |
Collapse
|
3
|
Wang Y, Liu T, Han T, Xie J, Sun L, Zhang S, Dou B, Xin J, Quek SY, Zhang N. Construction and characterization of novel starch-oleic acid conjugates catalyzed by microwave-assisted lipase reaction. Int J Biol Macromol 2025; 306:141507. [PMID: 40015396 DOI: 10.1016/j.ijbiomac.2025.141507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Corn starch and oleic acid were treated with microwave-assisted lipase catalysis under low moisture conditions. The effects of the treatments on the interaction, structural changes and binding mechanism between corn starch and oleic acid were investigated. After microwave treatment, some of the α-1,4 glycosidic bonds in corn starch were broken, causing linear starch to precipitate. The content of amylose increased from 23.40 % to 51.66 %. The structure facilitates an increase the degree of complexation. The complex index of corn starch-oleic acid complexes was 43.2 % and that of corn starch-oleic acid conjugates was 57.7 %. The structures of samples were studied using by Raman spectroscopy, X-ray diffraction, nuclear magnetic resonance carbon spectrum, and scanning electron microscopy. The results indicated that the esterification reaction promoted the complexation reaction, creating a more stable structure that was less prone to disintegration. Among them, the starch-oleic acid conjugated compounds' resistant starch content was the highest at 69.12 %. The thermal stability of the corn starch oleic acid conjugate has also increased compared to the corn starch-oleic acid complex, with ΔH increased from 26.77 % to 31.33 %. The present study confirmed that the microwave combined with lipase catalysis could produce resistant starch with a more stable structure.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China.
| | - Tianjiao Liu
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Tianyu Han
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Jinhui Xie
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Lirui Sun
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Shuai Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Boxin Dou
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China
| | - Jiaying Xin
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China; State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Na Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin 150076, PR China.
| |
Collapse
|
4
|
Yang Y, Liu G, Xu H, Zhang Z, Tao M, Gu Z. Effect of glyceryl monopalmitate on the gelatinization, rheological and retrogradation properties of Japonica rice starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1882-1893. [PMID: 39450653 DOI: 10.1002/jsfa.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Starch-based food is easy to retrograde during cold storage after gelatinization, which leads to quality fission and a relatively short shelf life. Some lipids can effectively enhance the storage stability of starch gels by the formation of starch-lipid complexes. The present study aimed to investigate the effects of glyceryl monopalmitate (GMP) on gelatinization, rheological and retrogradation properties of Japonica rice starch (JS) at different conditions and to analyze the correlation between the physical-chemical properties and structural characteristics of the JS-GMP complex. RESULTS The addition of GMP to JS could retard the process of starch gelatinization through forming JS-GMP complexes. The resulting JS-GMP pastes were typical pseudoplastic fluids with shear thinning, and their solid-like properties were prominent (tan δ < 1). In addition, the retrogradation of JS-GMP complex was more inhibited during storage at -18 than at 4 °C. The added amount of GMP was negatively and highly associated with the minimum viscosity, consistency coefficient, hardness and elasticity, whereas it was positively and highly correlated with the breakdown value, fluid characteristic index and relative crystallinity. The relative crystallinity of JS was affected by GMP in an approximate dose-dependent manner. CONCLUSION The addition of GMP can influence the gelatinization properties, rheological properties and retrogradation characteristics of JS, and the formation of JS-GMP complex could improve the quality and storage stability of starch gel, which provides ideas for the quality control of starch-based food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuexi Yang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Guoqiang Liu
- Medical College, Jiaxing University, Jiaxing, China
| | - Hongmei Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zihao Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Min Tao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Zhenyu Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
5
|
Raza H, Zhou Q, Cheng KW, He J, Wang M. Synergistic impact of ultrasound-high pressure homogenization on the formation, structural properties, and slow digestion of the starch-phenolic acid complex. Food Chem 2024; 445:138785. [PMID: 38387320 DOI: 10.1016/j.foodchem.2024.138785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The modification of starch digestibility can be achieved through the formation of complexes with polyphenols. We studied the combined impacts of ultrasound and high-pressure homogenization (UT-HPH) on the structure and in vitro digestibility of rice starch-chlorogenic acid complexes. The development of V-type complexes was supported by our findings, which also showed that synergistic UT-HPH therapy exhibited the highest absorbance value for the complexing index (0.882). Significant alterations in digestibility were also observed in the complexes, with the content of RDS decreasing from 49.27% to 27.06%, the content of slowly SDS increasing from 25.69% to 35.35%, and the percentage of RS increasing from 25.05% to 37.59%. Furthermore, a high positive correlation was found by applying the Pearson correlation coefficient in our research between RS, weight, PSD, and CI. This study presents a sustainable processing approach for utilizing chlorogenic acid in starch-rich food systems.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK 1958, Denmark
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
6
|
Gong X, Li J, Liu Z, Xu X, Wang A, Nie M, Lin R, Tian Y, Zhang X, Wang L, Liu L, Li Y, Wang F, Tong LT. Developing high resistant starch content rice noodles with superior quality: A method using modified rice flour and psyllium fiber. Int J Biol Macromol 2024; 272:132779. [PMID: 38825268 DOI: 10.1016/j.ijbiomac.2024.132779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The effects of high-resistant starch (RS) content rice flour, psyllium husk powder (PHP), and psyllium powder (PP) on the edible quality and starch digestibility of rice noodles were investigated in this study. High-RS rice noodles showed lower digestibility but poor edible quality. With the addition of PHP and PP, high-RS rice noodles' cooking and texture quality were improved significantly, especially the breakage rates, cooking losses, and chewiness (P < 0.05). Compared to traditional white rice noodle's estimated glycemic index (eGI) of 86.69, the eGI values for 5PHP-RN and 5PHP-2PP-RN were significantly decreased to 66.74 and 65.77, achieving a medium GI status (P < 0.05). This resulted from the high amylose and lipid content in the modified rice flour and psyllium, leading to increase of starch crystallinity. Besides, based on the analysis of Pearson's correlation, it can be found that PHP rich in insoluble dietary fiber (IDF) could improve high-RS noodle cooking and texture quality better, while PP rich in soluble dietary fiber (SDF) can further reduce the RDS content and its starch digestibility. Therefore, utilizing modified rice flour with an appropriate addition of PHP and PP can be considered an effective strategy for producing superior-quality lower glycemic index rice noodles.
Collapse
Affiliation(s)
- Xue Gong
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Jiaxin Li
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhigang Liu
- Fengyi (Shanghai) Biotechnology R&D Center Co., Ltd., Shanghai 201200, China
| | - Xuebing Xu
- Fengyi (Shanghai) Biotechnology R&D Center Co., Ltd., Shanghai 201200, China
| | - Aixia Wang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Mengzi Nie
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yu Tian
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xiya Zhang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yang Li
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology/Western Agricultural Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
7
|
Geng DH, Tang N, Gan J, Cheng Y. Two-step modification of pullulanase and transglucosidase: A novel way to improve the gel strength and reduce the digestibility of rice starch. Int J Biol Macromol 2024; 266:130992. [PMID: 38521318 DOI: 10.1016/j.ijbiomac.2024.130992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The multiscale structure, gel strength and digestibility of rice starch modified by the two-step modification of pullulanase (PUL) pretreatment and transglucosidase (TG) treatment for 6, 12, 18 and 24 h were investigated. The debranching hydrolysis of PUL produced some linear chains, which rearranged to form stable crystalline structures, reducing the digestible starch content, but weakening the gel strength. TG treatment connected some short chains to longer linear chains via α-1,6-glycosidic bonds, generating the structures of linear chain with fewer branches. The short branches promoted the interaction between starch molecules to form a more compact three-dimensional gel network structure, showing higher hardness and springiness. Moreover, these chains could form more stable crystals, reducing the digestible starch content, and the increase of branching degree inhibited digestive enzyme hydrolysis, reducing the digestion rate. The multiscale structure of starch tended to stabilize after TG treatment for 18 h, which could form a gel with stronger strength and lower digestibility than native starch gel. Therefore, the two-step modification of PUL and TG was an effective way to change the structure of rice starch to improve the gel strength and reduce the digestibility.
Collapse
Affiliation(s)
- Dong-Hui Geng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Xie J, Cheng L, Li Z, Li C, Hong Y, Gu Z. Effect of non-starch components on the structural properties, physicochemical properties and in vitro digestibility of waxy highland barley starch. Int J Biol Macromol 2024; 255:128013. [PMID: 37951447 DOI: 10.1016/j.ijbiomac.2023.128013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Highland barley (HB) endosperm with an amylose content of 0-10 % is called waxy HB (WHB). WHB is a naturally slow-digesting grain, and the interaction between its endogenous non-starch composition and the WHB starch (WHBS) has an important effect on starch digestion. This paper focuses on the mechanisms by which the components of β-glucan, proteins and lipids affect the molecular, granular, crystalline structure and digestive properties of WHBS. After eliminating the main nutrients except for starch, the estimated glycemic index (eGI) of the samples rose from 62.56 % to 92.93 %, and the rapidly digested starch content increased from 60.81 % to 98.56 %, respectively. The resistant starch (RS) content, in contrast, dropped from 38.61 % to 0.13 %. Comparatively to lipids, β-glucan and protein contributed more to the rise in eGI and decline in RS content. The crystalline characteristics of starch were enhanced in the decomposed samples. The samples' gelatinization properties improved, as did the order of the starch molecules. Protein and β-glucan form a dense matrix on the surface of WHBS particles to inhibit WHBS digestion. In summary, this study revealed the mechanism influencing the digestibility of WHBS from the perspective of endogenous non-starch composition and provided a theoretical basis to develop slow-digesting foods.
Collapse
Affiliation(s)
- Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Jiaxing Institute of Future Food, Jiaxing 314050, People's Republic of China.
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Zhu Z, Sun C, Wang C, Mei L, He Z, Mustafa S, Du X, Chen X. The anti-digestibility mechanism of soy protein isolate hydrolysate on natural starches with different crystal types. Int J Biol Macromol 2024; 255:128213. [PMID: 37989032 DOI: 10.1016/j.ijbiomac.2023.128213] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
The effects of soy protein isolate hydrolysate (SPIH) on the physicochemical properties and digestive characteristics of three starch types (wheat, potato, and pea) were investigated. Fourier-transform infrared spectroscopy and molecular dynamics simulations showed that hydrogen bonds were the driving force of the interaction between SPIH and starch. Furthermore, the SPIH was predicted to preferentially bind to the terminal region of starch using molecular dynamics simulations. Compared to pure starch, adding 20 % SPIH to wheat starch, potato starch, and pea starch, the content of resistant starch increased by 39.71 %, 125.66 % and 37.83 %, respectively. Both the radial distribution function (RDF) and low field-nuclear magnetic resonance (LF-NMR) showed that SPIH reduced the flow of water molecules in starch, indicating that SPIH competed with starch for water molecules. Multiple characterization experiments and molecular dynamics simulations confirmed that the anti-digestibility mechanism of SPIH on natural starches with different crystal types could be attributed to the interaction between starch and SPIH, which decreased the catalytic efficiency of amylase. This study clarified the anti-digestibility mechanism of SPIH on natural starches, which provides new insights into the production of low-glycemic index foods for the diabetic population.
Collapse
Affiliation(s)
- Zhijie Zhu
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chengyi Sun
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Caihong Wang
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Liping Mei
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoxian He
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Saddam Mustafa
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xianfeng Du
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Xu Chen
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
10
|
Wang C, Zhu Z, Mei L, Xia Y, Chen X, Mustafa S, Du X. The structural properties and resistant digestibility of maize starch-glyceride monostearate complexes. Int J Biol Macromol 2023; 249:126141. [PMID: 37544562 DOI: 10.1016/j.ijbiomac.2023.126141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
This study investigated the effects of pullulanase debranching on the structural properties and digestibility of maize starch (MS)-glyceryl monostearate (GMS) complexes. According to our results, the apparent amylose content of MS increased from 36.34 % to 95.55 % and complex index reached 93.09 % after 16 h of pullulanase debranching. The crystallinity of prepared MS-GMS complexes increased to 33.24 % with a blend of B-type and V-type crystals. The surface of prepared MS-GMS complexes granules emerged more small lamellar crystals tightly adhering to the surface of granules. The Fourier transforms infrared spectroscopy analysis showed that debranching pretreatment MS-GMS complexes exhibited higher levels of short-range orders structure. These results indicated that maize starch was favorable to form more ordered starch-lipid complexes structure after debranching pretreatment, which resulted in the restriction of starch hydrolysis. In vitro digestion data implied that resistant starch (RS) content increased with the extension of the debranching time, and the highest RS content (69.58 %) appeared with 16 h pullulanase debranching. This work suggests that debranching pretreatment could be an efficient way to produce ordered starch-lipid complexes with controllable structure and anti-digestibility.
Collapse
Affiliation(s)
- Caihong Wang
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhijie Zhu
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liping Mei
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaoyao Xia
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Saddam Mustafa
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianfeng Du
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Wang Z, Wang S, Xu Q, Kong Q, Li F, Lu L, Xu Y, Wei Y. Synthesis and Functions of Resistant Starch. Adv Nutr 2023; 14:1131-1144. [PMID: 37276960 PMCID: PMC10509415 DOI: 10.1016/j.advnut.2023.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023] Open
Abstract
Resistant starch (RS) has become a popular topic of research in recent years. Most scholars believe that there are 5 types of RS. However, accumulating evidence indicates that in addition to starch-lipid complexes, which are the fifth type of RS, complexes containing starch and other substances can also be generated. The physicochemical properties and physiologic functions of these complexes are worth exploring. New physiologic functions of several original RSs are constantly being discovered. Research shows that RS can provide health improvements in many patients with chronic diseases, including diabetes and obesity, and even has potential benefits for kidney disease and colorectal cancer. Moreover, RS can alter the short-chain fatty acids and microorganisms in the gut, positively regulating the body's internal environment. Despite the increase in its market demand, RS production remains limited. Upscaling RS production is thus an urgent requirement. This paper provides detailed insights into the classification, synthesis, and efficacy of RS, serving as a starting point for the future development and applications of RS based on the current status quo.
Collapse
Affiliation(s)
- Zhanggui Wang
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Shuli Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinhong Xu
- Department of Acupuncture and Massage, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Qi Kong
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Fei Li
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lin Lu
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Yibiao Xu
- Department of Neurosurgery, The Fifth People's Hospital of Huai 'an, Huai' an, China
| | - Yali Wei
- Department of Radiotherapy, Anhui No. 2 Provincial People's Hospital, Hefei, China; Department of Women's Health, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children's Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
12
|
Raza H, Ameer K, Ren X, Liu Y, Kang L, Liang Q, Guo T, Ma H, Wang M. Synergistic impact of heat-ultrasound treatment on the properties and digestibility of Sagittaria sagittifolia L. starch-phenolic acid complexes. Int J Biol Macromol 2023:125457. [PMID: 37331532 DOI: 10.1016/j.ijbiomac.2023.125457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The current research investigated the multi-scale structural interactions between arrowhead starch (AS) and phenolic acids, such as ferulic acid (FA) and gallic acid (GA) to identify the mechanism of anti-digestion effects of starch. AS suspensions containing 10 % (w/w) GA or FA were subjected to physical mixing (PM) followed by heat treatment at 70 °C for 20 min (HT) and a synergistic heat-ultrasound treatment (HUT) for 20 min using a dual-frequency 20/40 KHz system. The synergistic HUT significantly (p < 0.05) increased the dispersion of phenolic acids in the amylose cavity, with GA showing a higher complexation index than FA. XRD analysis showed a typical V-type pattern for GA, indicating the formation of an inclusion complex, while peak intensities decreased for FA following HT and HUT. FTIR revealed sharper peaks possibly of amide bands in the ASGA-HUT sample compared to that of ASFA-HUT. Additionally, the emergence of cracks, fissures, and ruptures was more pronounced in the HUT-treated GA and FA complexes. Raman spectroscopy provided further insight into the structural attributes and compositional changes within the sample matrix. The synergistic application of HUT led to increased particle size in the form of complex aggregates, ultimately improving the digestion resistance of the starch-phenolic acid complexes.
Collapse
Affiliation(s)
- Husnain Raza
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Xiaofeng Ren
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Yuxuan Liu
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Lixin Kang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Tao Guo
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Haile Ma
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Li J, Wang M, Liu G, Wang W, Hu A, Zheng J. Effects of microwave and conventional heating on physicochemical, digestive, and structural properties of debranched quinoa starch-oleic acid complexes with different water addition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2146-2154. [PMID: 36574261 DOI: 10.1002/jsfa.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND A starch-lipid complex is a new type of resistant starch, which is of great importance for the prevention of chronic diseases such as diabetes. Most starch-lipid complexes usually need to be treated by heating to make them suitable for a variety of applications, and starch-based foods are generally not edible without a heat-treatment process. However, the digestion and structural properties of the starch-lipid complex will be changed after heating. In this study, microwave and conventional heating were used to treat debranched quinoa starch-oleic acid complexes (DQS-OA) with different water addition conditions, and the effects of the two methods on the physicochemical, digestive, and structural properties of DQS-OA were compared. RESULTS The results of in vitro digestibility showed that the resistant starch content (235.34-269.55 g kg-1 ) of the conventional heating-treated samples was significantly higher than that the microwave-treated samples (141.51-157.99 g kg-1 ). Moreover, after microwave treatment, the short-range molecular order and crystalline structure of DQS-OA were destroyed and the particle size became smaller. In contrast, the thermal stability, enthalpy, and crystallinity of the complexes after conventional heating were improved. The ratio at 1047/1022 cm-1 of complexes has also been increased. CONCLUSION This study demonstrated that conventional water-bath heating was better than microwave heating in increasing digestion resistance, improving the short-range and long-range molecular order, and promoting the formation of DQS-OA. With an increase in water addition, the influence of microwave or water-bath treatment on the properties of DQS-OA became greater. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Mengting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Guangxin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Wei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Aijun Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| |
Collapse
|
14
|
Zhuang J, Liu H, You L, Xu F, Zeng H, Zeng S. Influence of ultrasonic-microwave power on the structure and in vitro digestibility of lotus seed starch-glycerin monostearin complexes after retrogradation. Int J Biol Macromol 2023; 228:59-67. [PMID: 36563815 DOI: 10.1016/j.ijbiomac.2022.12.188] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The digestibility of starches with high amylose content can be modulated by the complexation with lipids, which is largely influenced by physical modification methods. In the current work, the impact of ultrasound-microwavre synergistic treatment on the structure and in vitro digestibility of lotus seed starch-glycerin monostearin complexes (LS-GMSc) after retrogradation were investigated. Results showed that 400 W of ultrasound treatment combined with microwave was more conducive to the formation of LS-GMSc, which increased the microcrystalline region and ordering degree of starch. However, excessively high ultrasound intensity weakened V-type diffraction and promoted amylose recrystallization. Investigation of the micromorphology and thermal properties revealed that the existence of V-complexes retarded starch retrogradation, and this effect was significantly enhanced after appropriate ultrasound (400 W) treatment. The digestion showed that 400 W of ultrasound treatment improved the digestive resistance of starch complexes and increased the content of resistant starch. These results are significant to the theoretical foundation and functional application of V-type complexes on anti-gelling and anti-digestion.
Collapse
Affiliation(s)
- Jie Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huifang Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longnong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangqing Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Effects of NaCl and sucrose on the structural and functional properties of debranched quinoa starch-oleic acid complexes under baking. Int J Biol Macromol 2023; 226:1588-1596. [PMID: 36455819 DOI: 10.1016/j.ijbiomac.2022.11.271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The effects of different dosage of NaCl and sucrose on the structural and functional properties of debranched quinoa starch-oleic acid complexes (DQS-OA) under baking were investigated. The results showed that the resistant starch content of the baked DQS-OA increased by 17.15 % than DQS-OA. The addition of NaCl destroyed the thermal stability, short-range molecular order and crystalline structure of the complexes. The results of particle size, SEM and amylose content showed that NaCl accelerated the degradation of starch granules, which reduced the enzyme resistance of starch. In contrast, the enthalpy (7.28 J/g-7.78 J/g) and crystallinity (54.29 %-56.69 %) of the samples with sucrose significantly increased, and the molecular structure of the complexes became more ordered. Furthermore, with the increase of sucrose concentration, the resistant starch content also increased from 28.80 % to 31.41 %.
Collapse
|
16
|
Dhull SB, Chandak A, Collins MN, Bangar SP, Chawla P, Singh A. Lotus Seed Starch: A Novel Functional Ingredient with Promising Properties and Applications in Food—A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Ankita Chandak
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Maurice N. Collins
- Bernal Institute School of Engineering University of Limerick Limerick V94 T9PX Ireland
- Health Research Institute University of Limerick Limerick V94 T9PX Ireland
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC 29631 USA
| | - Prince Chawla
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab 144411 India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh Sahib Punjab 140406 India
| |
Collapse
|
17
|
Wang L, Wang M, Zhou Y, Wu Y, Ouyang J. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chem 2022; 377:131990. [PMID: 34999449 DOI: 10.1016/j.foodchem.2021.131990] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023]
Abstract
The effects of ultrasound and microwave on the physicochemical properties of normal maize and potato starches were compared. The cavitation effect of ultrasound loosened the internal space and destroyed the structure of starch granules, increased the damaged starch content, which was consistent with the decrease in relative crystallinity and the number and brightness of Maltese crosses, and the increase in D(0.5) and D(4,3) values. Microwave vibrated the molecules inside the granules and generated heat to destroy the structure of starch. The content of damaged starch was significantly lower in microwave-treated starch compared with ultrasound-treated starch. Microwave treatment promoted the formation of amylose-lipid complex, with the larger peak area at 20°(2θ) than that of the ultrasound-treated starch. The type of starch and the treatment sequence showed a significant effect. The results might help understand the mechanism of ultrasound and microwave treatments influencing the structural properties of starches.
Collapse
Affiliation(s)
- Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Meng Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing 100015, China
| | - Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Insights into the formation and digestive properties of lotus seed starch-glycerin monostearate complexes formed by freeze-thaw pretreatment and microfluidization. Int J Biol Macromol 2022; 204:215-223. [PMID: 35104470 DOI: 10.1016/j.ijbiomac.2022.01.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
The objective of this paper was to investigate the formation and digestive properties of lotus seed starch-glycerin monostearate complexes (LSG) formed by freeze-thaw pretreatment and microfluidization. The results showed that the preparation of LSG with six freeze-thaw cycles at 60 MPa had the highest complex index (69.92%). The formation of LSG led to the conversion of the crystalline pattern of lotus seed starch from C-type to V-type and increased the proportion of the microcrystalline region. In addition, the digestive results indicated that LSG had a high resistance to digestive enzymes, which was conducive to increasing the content of resistant starch. Based on the above investigation, the formation and digestive properties showed that the appropriate number of freeze-thaw cycles of pretreatment could facilitate the complexation of starch and lipid under low-pressure microfluidization, which made for the directional regulation of helical conformation and anti-digestion.
Collapse
|
19
|
In vitro digestion and structural properties of rice starch modified by high methoxyl pectin and dynamic high-pressure microfluidization. Carbohydr Polym 2021; 274:118649. [PMID: 34702468 DOI: 10.1016/j.carbpol.2021.118649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
The rheological, structural properties and in vitro digestibility of starch with high methoxyl pectin (HMP) and further modified by dynamic high-pressure microfluidization (DHPM) were investigated. The viscosity and elasticity increased on addition of HMP and were more pronouncedly affected by 10% HMP. However, after DHPM treatment, the viscosity and elasticity decreased with increasing DHPM pressure. After 100 MPa DHPM treatment, the ordered and crystalline structures were further increased compared with starch-HMP mixtures. A compact and dense surface of starch paste was formed under 100 MPa DHPM and 10% HMP treatment, thus significantly slowing down the digestibility. In contrast, the crystalline and semicrystalline structure of starch were disrupted by intense shear force under 200 MPa DHPM. This study provides theoretical information regarding starch-HMP interaction and improves their functional and physicochemical properties through a promising strategy for better applications in food formulation.
Collapse
|
20
|
Chen C, Li G, Zhu F. A novel starch from lotus (Nelumbo nucifera) seeds: Composition, structure, properties and modifications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Structure and physicochemical properties of starch affected by dynamic pressure treatments: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Effect of removal of endogenous non-starch components on the structural, physicochemical properties, and in vitro digestibility of highland barley starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Zheng J, Huang S, Zhao R, Wang N, Kan J, Zhang F. Effect of four viscous soluble dietary fibers on the physicochemical, structural properties, and in vitro digestibility of rice starch: A comparison study. Food Chem 2021; 362:130181. [PMID: 34082291 DOI: 10.1016/j.foodchem.2021.130181] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022]
Abstract
The effect of carboxymethyl cellulose (CMC), high-methoxyl pectin (HMP), konjac glucomannan (KGM), and xanthan gum (XG) on the physicochemical, structural properties, and digestibility of rice starch were investigated and compared. The four viscous soluble dietary fibers (VSDFs) increased the viscosity, storage modulus and loss modulus while decreased the pasting temperature and gelatinization enthalpy. Moreover, XG produced the lowest peak viscosity and dynamic modulus compared with the other VSDFs. Furthermore, the degree of short-range ordered structure of starch with KGM increased from 0.8448 to 0.8716; and the relative crystallinity of starch with XG increased by 12%. An ordered and reunited network structure was observed in SEM. In addition, VSDF inhibited the digestibility of rice starch and significantly increased the resistant starch content. This study compared the effect of four VSDFs on the physicochemical, structural and digestion properties of rice starch to fully understand and develop their application to starchy foods.
Collapse
Affiliation(s)
- Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China.
| | - Shan Huang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Ruyue Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Nan Wang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| |
Collapse
|
24
|
Gutiérrez TJ, Tovar J. Update of the concept of type 5 resistant starch (RS5): Self-assembled starch V-type complexes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Tu D, Ou Y, Zheng Y, Zhang Y, Zheng B, Zeng H. Effects of freeze-thaw treatment and pullulanase debranching on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. Int J Biol Macromol 2021; 177:447-454. [PMID: 33636260 DOI: 10.1016/j.ijbiomac.2021.02.168] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022]
Abstract
The effects of multiple cycles of freeze-thaw treatment, combined with pullulanase debranching, on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes were investigated. The formation and melting of ice crystals during freeze-thaw treatment disrupted the crystalline structure of the starch granules, creating pores which facilitated access of pullulanase to the interior of the granules. Pullulanase debranching increased the free amylose content of the starch, which promoted the formation of starch-lipid complexes, which, in turn, increased the proportion of resistant starch and the overall resistance of the starch to digestive enzyme action. These effects increased with the number of freeze-thaw cycles, because more cycles increased both the disruption of the granule structure and the extent of pullulanase debranching. These findings provide a basis for the preparation of functional foods with low glycemic indices, which have strong potential for management of type II diabetes.
Collapse
Affiliation(s)
- Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
26
|
Zheng Y, Ou Y, Zhang C, Zhang Y, Zheng B, Zeng S, Zeng H. The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch. Int J Biol Macromol 2021; 175:49-57. [PMID: 33524480 DOI: 10.1016/j.ijbiomac.2021.01.175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
In order to investigate the effects of exogenous V-type starch on the structural properties and dispersion stability of lotus seed starch after autoclave treatment, the crystal structure, molecular structure, and dispersion stability were analyzed and discussed, as well as compared with exogenous A-type and B-type starches. Analysis of structural properties indicated that the addition of different crystal nuclei led the crystallization of disordered helices to a specific direction. The B- and V-type starch addition increased the crystallinities of starch and enhanced the ordered arrangement of disordered helices, whereas A-type starch had no significant positive influence on the stability of starch system. The microstructure observation showed that A- and B-type starch addition led to a rough and porous morphology of starch particles; the presence of V-type starch retarded the agglomeration and retrogradation of starch after autoclaving. Analysis of contact angle and dispersion stability revealed that the addition of various exogenous starch increased the contact angle of starch particles in different extent, suggesting the enhancement of hydrophobicity. But B-type starch addition resulted in the poor dispersion stability compared to A-type starch, instead V-type starch addition improved the dispersion stability of starch in aqueous solution, allowing the particles to stay dispersed for 141.12 ± 6.52 min. These results provided a theoretical basis for the effects of exogenous type starch on original starch properties, and revealed the potential of V-type starch as dispersion stabilizer.
Collapse
Affiliation(s)
- Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chong Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Ou Y, Zheng Y, Zhang Y, Zeng S, Zheng B, Zeng H. Effects of exogenous V-type complexes on the structural properties and digestibility of autoclaved lotus seed starch after retrogradation. Int J Biol Macromol 2020; 165:231-238. [DOI: 10.1016/j.ijbiomac.2020.09.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/27/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
|
28
|
Combination treatment of bamboo shoot dietary fiber and dynamic high-pressure microfluidization on rice starch: Influence on physicochemical, structural, and in vitro digestion properties. Food Chem 2020; 350:128724. [PMID: 33293145 DOI: 10.1016/j.foodchem.2020.128724] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
The physicochemical, structural properties and digestibility of rice starch treated by bamboo shoot dietary fiber (BSDF) combined with dynamic high-pressure microfluidization (DHPM) were investigated. Compared with starch modified by BSDF alone, the combination treatment decreased the pasting viscosity and viscoelasticity of starch. Furthermore, the pasting viscosity and viscoelasticity showed an increase from 50 to 100 MPa and then decreased after increasing the pressure to 150 and 200 MPa. The enthalpy of gelatinization and relative crystallinity of starch treated by BSDF and 100 MPa DHPM significantly increased by 17% and 63%, respectively. Scanning electron microscopy images demonstrated that flaky BSDF coated on starch granules to form a protective layer. As a result, the fractions of resistant starch increased and the starch hydrolysis extent and rate decreased under 100 MPa DHPM. This study highlights an innovative and promising strategy for improving the properties of starch and facilitating its utilization.
Collapse
|
29
|
Wang B, Lin X, Zheng Y, Zeng M, Huang M, Guo Z. Effect of homogenization-pressure-assisted enzymatic hydrolysis on the structural and physicochemical properties of lotus-seed starch nanoparticles. Int J Biol Macromol 2020; 167:1579-1586. [PMID: 33220375 DOI: 10.1016/j.ijbiomac.2020.11.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
In previous studies, we successfully prepared lotus-seed starch nanoparticles (LS-SNPs) using enzymatic methods. To further improve their performance, we studied the structural, physical and chemical properties of LS-SNPs prepared by high-pressure homogenization (HPH)-assisted enzymatic hydrolysis (EH). HPH treatments at different pressures and frequencies have a significant effect on the particle size and molecular weight of LS-SNPs. Structural analyses showed that LS-SNP and H-LS-SNP both comprised B-type starch crystals. As the homogenization pressure and frequency were increased, the relative crystallinity of H-LS-SNP first increased and then decreased, indicating that HPH treatment affected the double-helix structure of LS-SNPs. The results also show that moderate HPH treatment was beneficial for enzymatic hydrolysis, but when the HPH treatment was further increased, it destroyed the ordered structure of LS-SNPs. Our research showed that H-LS-SNPs with the smallest particle size and the highest crystallinity were obtained under pressure of 150 MPa, a homogenization frequency of five times the original, and a material-to-liquid ratio of 3%. The results indicate that HHP-assisted EH is a suitable method for preparing SNPs. These findings provide new ideas for the preparation of SNPS to meet the needs of food industry.
Collapse
Affiliation(s)
- Bailong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xiong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Muhua Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Minli Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| |
Collapse
|