1
|
Alves SJDM, Santos MA, Neto JEDS, da Silva HN, Barbosa MCS, Fook MVL, Navarro RF, Silva SMDL. Combined Effect of pH and Neutralizing Solution Molarity on the Rheological Properties of Chitosan Hydrogels for Biomedical Applications. Gels 2025; 11:212. [PMID: 40136917 PMCID: PMC11942296 DOI: 10.3390/gels11030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are promising materials for biomedical applications due to their tunable properties. Despite significant research on optimizing the mechanical and rheological properties of chitosan hydrogels, a comprehensive analysis incorporating pH and molarity of the neutralizing solution is still lacking. This study addresses this gap by evaluating how these factors influence the rheological characteristics of chitosan hydrogels. The hydrogels were prepared using an acidic blend and were neutralized with sodium hydroxide solutions. Rheological characterization demonstrated that all samples exhibited pseudoplastic behavior, with viscosity decreasing under shear stress. Hydrogels with higher pH values exhibited lower viscosity, which is attributed to the reduced protonation and weaker electrostatic repulsion between chitosan chains. In contrast, more acidic conditions resulted in increased viscosity and greater chain entanglements. NaOH concentration impacted gel stability; lower concentrations resulted in more stable gels, whereas higher concentrations increased crosslinking but compromised integrity at elevated pH. These findings provide essential insights for optimizing chitosan hydrogels with customized properties, making them highly suitable for specific biomedical applications, such as advanced 3D-printed wound dressings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rômulo Feitosa Navarro
- Northeast Biomaterials Evaluation and Development Laboratory (CERTBIO), Graduate Program in Materials Science and Engineering (PPG-CEMat), Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil; (S.J.d.M.A.); (M.A.S.); (J.E.d.S.N.); (H.N.d.S.); (M.C.S.B.); (M.V.L.F.)
| | - Suédina Maria de Lima Silva
- Northeast Biomaterials Evaluation and Development Laboratory (CERTBIO), Graduate Program in Materials Science and Engineering (PPG-CEMat), Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil; (S.J.d.M.A.); (M.A.S.); (J.E.d.S.N.); (H.N.d.S.); (M.C.S.B.); (M.V.L.F.)
| |
Collapse
|
2
|
Zhang S, Zuo K, Zhang L, Zhang C, Shi J. Preparation and Properties of Chitosan Complexes Consisting of Artemisia argyi Volatile Oil Nanoemulsion. Molecules 2025; 30:585. [PMID: 39942687 PMCID: PMC11820023 DOI: 10.3390/molecules30030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Artemisia argyi volatile oil (AAVO) is a kind of natural oil with abundant active components and remarkable medicinal and healthcare value. However, AAVO has low solubility, stability, and bioavailability. Here, to address these issues, a nanoemulsion system of Artemisia argyi volatile oil (AAVO-Ne) is constructed using phase transition titration, and the conditions are continuously optimized to combine it with chitosan, forming a chitosan composite of the volatile oil nanoemulsion (AAVO-NeCs). The structure was analyzed using Fourier transform infrared (FT-IR) spectroscopy, and the performance was evaluated through in vitro antibacterial tests, in vitro release experiments, and antioxidant assays. The results indicated that the typical characteristic absorption peaks of AAVO shifted in the AAVO-Ne spectrum and new absorption peaks appeared in the AAVO-NeCs, which implied that the formation of AAVO-NeCs involved not only a physical encapsulation process but also certain chemical interactions, thus enhancing the stability and bioactivity of the composites. Compared to AAVO, AAVO-NeCs exhibited a 1.87-fold increase in antibacterial activity against antibiotic-resistant bacteria. Meanwhile, the in vitro release study demonstrated that AAVO-NeCs exhibited a biphasic release pattern. Compared to AAVO-Ne and AAVO, AAVO-NeCs also showed a significant enhancement in antioxidant activity. Overall, AAVO-NeCs demonstrate improved solubility and efficacy of AAVO, as well as high-efficiency delivery, antibacterial, sustained-release, and antioxidant properties. These attributes position AAVO-NeCs as a promising candidate for applications in drug delivery, food preservation, and other fields, offering innovative solutions and contributing to the sustainable development of related industries.
Collapse
Affiliation(s)
- Shun Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (S.Z.); (K.Z.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723000, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723000, China
| | - Kewei Zuo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (S.Z.); (K.Z.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723000, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723000, China
| | - Lijun Zhang
- School of Chemical and environmental Science, Shaanxi University of Technology, Hanzhong 723000, China;
- Shaanxi Provincial Key Laboratory of Catalysis Basis and Application, Hanzhong 723000, China
| | - Chenlu Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (S.Z.); (K.Z.)
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723000, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723000, China
| | - Juan Shi
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723000, China
- School of Chemical and environmental Science, Shaanxi University of Technology, Hanzhong 723000, China;
- Shaanxi Provincial Key Laboratory of Catalysis Basis and Application, Hanzhong 723000, China
| |
Collapse
|
3
|
Shi J, Tang J, Xu J, Jiang N, Yang Y, Chen H, Han Y, Fu X. Applications of hydrogels and nanoparticles in the treatment of traumatic brain injury. Front Bioeng Biotechnol 2025; 12:1515164. [PMID: 39834632 PMCID: PMC11743581 DOI: 10.3389/fbioe.2024.1515164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Traumatic brain injury (TBI) represents a significant global public health issue, with effective management posing numerous challenges. The pathophysiology of TBI is typically categorized into two phases: primary and secondary injuries. Secondary injury involves pathophysiological mechanisms such as blood-brain barrier (BBB) disruption, mitochondrial dysfunction, oxidative stress, and inflammatory responses. Current pharmacological strategies often encounter obstacles in treating TBI effectively, primarily due to challenges in BBB penetration, inadequate target site accumulation, and off-target toxicity. Versatile hydrogels and nanoparticles offer potential solutions to these limitations. This review discusses recent progress in utilizing hydrogels and nanoparticles for TBI treatment over the past 5 years, highlighting their relevance to the underlying injury pathophysiology. Hydrogels and nanoparticles demonstrate substantial promise in addressing secondary brain injury, providing a broad spectrum of future therapeutic opportunities.
Collapse
Affiliation(s)
- Jiaying Shi
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Tang
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Jin Xu
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Ning Jiang
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Yuanwei Yang
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Honglin Chen
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Yuhan Han
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianhua Fu
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| |
Collapse
|
4
|
Zhang G, Cheng P, Wang Z, Han J, Fan Z. Haematococcus pluvialis meets gellan gum: Rheological and thermal exploration of a new resource food and biomedical gel matrix. J Food Sci 2024; 89:7831-7845. [PMID: 39363222 DOI: 10.1111/1750-3841.17433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
The increasing interest in hydrogel matrices and their diverse applications has fueled extensive research. However, single-component gels have a limited adjustable performance range, and multi-component gels raise concerns about biological safety, hindering their widespread use. This study focuses on harnessing high-speed shearing and ultrasound-assisted methods to incorporate active natural Haematococcus pluvialis (HP), creating novel composite hydrogels in conjunction with biological macromolecule gellan gum, and eliminating the need for structural modifications or chemical crosslinking. Rich astaxanthin, proteins, polysaccharides, and other components in HP can fill and promote the formation of a unified functional network. The study aims to explore the potential of HP as a rheology regulator and investigate its impact on the rheological properties of the gels. Various rheological models, including Power-Law, Herschel-Bulkley, and Arrhenius, were employed for comparative analysis. This pioneering report on gellan/HP hydrogels holds significant importance as they exhibit optimized elasticity, thermal stability, enhanced injectability, and self-recovery, making them suitable for a wide range of applications in specialized medical food and biomedicine.
Collapse
Affiliation(s)
- Guangming Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Quality Department, Liaocheng, China
| | - Ping Cheng
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Quality Department, Liaocheng, China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Quality Department, Liaocheng, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Quality Department, Liaocheng, China
| |
Collapse
|
5
|
Mohamed Yunus R, Parisi D. Scaling Laws in Polysaccharide Rheology: Comparative Analysis of Water and Ionic Liquid Systems. Biomacromolecules 2024; 25:6883-6898. [PMID: 39283883 PMCID: PMC11480991 DOI: 10.1021/acs.biomac.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This study investigates the rheological behavior of two plant-based polysaccharides, with different degrees of hydrophilicity, agar (highly hydrophilic) and guar gum (hydrophilic), in water and 1-ethyl-3-methylimidazolium acetate (EMImAc). The rheological response of these polymers is highly dependent on the solvent's ability to disrupt intermolecular associations. In water, agar forms hydrogels, while guar gum behaves as a viscoelastic liquid with slow modes. The plateau modulus (GN0) scales with polymer concentration (c) as GN0 ∼ c3, consistent with other natural polymers. In EMImAc, both polysaccharides form viscoelastic liquids, exhibiting GN0 ∼ c2.3, as expected for semiflexible polymer solutions. However, the terminal relaxation time, τD, and the specific viscosity, ηsp, scale as τD ∼ c5.3 and ηsp ∼ c7.6, indicative of intermolecular chain-chain associations. Despite the solvent or polysaccharide, the fractional viscosity overshoot and the shear strain at the maximum stress show a terminal Weissenberg number dependence similar to other synthetic polymers.
Collapse
Affiliation(s)
- Roshan
Akdar Mohamed Yunus
- Department of Chemical Engineering,
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Daniele Parisi
- Department of Chemical Engineering,
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Mork S, Johannessen M, Škalko-Basnet N, Jøraholmen MW. Chitosan and liposomal delivery systems for epicatechin or propyl gallate targeting localized treatment of vulvovaginal candidiasis. Int J Pharm 2024; 662:124489. [PMID: 39032871 DOI: 10.1016/j.ijpharm.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Natural polyphenols are promising alternatives to antifungals for novel treatments of vulvovaginal candidiasis (VVC) in an era of antimicrobial resistance. However, polyphenols are poorly soluble and prone to degradation. To overcome their limitations, we propose incorporation in liposomes. The study aimed to develop chitosan and liposome comprising delivery systems for epicatechin (EC) or propyl gallate (PG) as treatment of VVC. EC was selected for its antioxidative properties and PG as an ester of antifungal gallic acid. To improve formulation retention at vaginal site, mucoadhesive chitosan was introduced into formulation as liposomal surface coating or hydrogel due to intrinsic antifungal properties. These polyphenol-loaded liposomes exhibited an average size of 125 nm with a 64 % entrapment efficiency (for both polyphenols). A sustained in vitro polyphenol release was seen from liposomes, particularly in chitosan hydrogel (p < 0.01 or lower). Viscosity was evaluated since increased viscosity upon mucin contact indicated adhesive bond formation between chitosan and mucin confirming mucoadhesiveness of formulations. Antifungal activity was evaluated by the broth microdilution method on Candida albicans CRM-10231. Unlike PG, incorporation of EC in liposomes enabled antifungal activity. Fungicidal activity of chitosan was confirmed both when used as liposomal coating material and as hydrogel vehicle.
Collapse
Affiliation(s)
- Silje Mork
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway.
| |
Collapse
|
7
|
Zhang G, Cheng P, Chu L, Zhang H, Wang C, Shi R, Wang Z, Han J, Fan Z. Unveiling the rheological and thermal behavior of a novel Salecan and whey protein isolate composite gel. Int J Biol Macromol 2024; 271:132528. [PMID: 38777009 DOI: 10.1016/j.ijbiomac.2024.132528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/10/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The burgeoning interest in the versatile hydrogel matrix, with its multifarious applications, has spurred extensive research in recent years. However, the implementation of chemically crosslinked gels on a large-scale has been hindered by their poor biosafety and excessive energy consumption. To address these challenges, this study focuses on harnessing physical methods to engineer novel composite hydrogels utilizing natural polysaccharides Salecan and whey protein isolate, obviating the need for structural modification or chemical crosslinking. The aim was to explore the rheological properties to understand their multiple behaviors. Various models, including Power-Law, Herschel-Bulkley, and Arrhenius, were also employed to compare and analyze rheological parameters. This study holds significance as it is the pioneering report on the hydrogels fabricated from Salecan/Whey protein isolate. These gels possess favorable attributes encompassing optimized elasticity, thermal-stability, enhanced injectability, and self-recovery, rendering them suitable for a multitude of applications in the realms of food and biomedicine.
Collapse
Affiliation(s)
- Guangming Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ping Cheng
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, China
| | - Lixia Chu
- Business School, Liaocheng University, Liaocheng 252059, China
| | - Hongtao Zhang
- CGN Power Hong Da Environmental technology Co.,Ltd, Jinan 250117, China
| | - Chao Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ruijie Shi
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
8
|
Patel DK, Won SY, Patil TV, Dutta SD, Lim KT, Han SS. Unzipped carbon nanotubes assisted 3D printable functionalized chitosan hydrogels for strain sensing applications. Int J Biol Macromol 2024; 265:131025. [PMID: 38513895 DOI: 10.1016/j.ijbiomac.2024.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
9
|
Vaidya G, Pramanik S, Kadi A, Rayshan AR, Abualsoud BM, Ansari MJ, Masood R, Michaelson J. Injecting hope: chitosan hydrogels as bone regeneration innovators. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:756-797. [PMID: 38300215 DOI: 10.1080/09205063.2024.2304952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Spontaneous bone regeneration encounters substantial restrictions in cases of bone defects, demanding external intervention to improve the repair and regeneration procedure. The field of bone tissue engineering (BTE), which embraces a range of disciplines, offers compelling replacements for conventional strategies like autografts, allografts, and xenografts. Among the diverse scaffolding materials utilized in BTE applications, hydrogels have demonstrated great promise as templates for the regeneration of bone owing to their resemblance to the innate extracellular matrix. In spite of the advancement of several biomaterials, chitosan (CS), a natural biopolymer, has garnered significant attention in recent years as a beneficial graft material for producing injectable hydrogels. Injectable hydrogels based on CS formulations provide numerous advantages, including their capacity to absorb and preserve a significant amount of water, their minimally invasive character, the existence of porous structures, and their capability to adapt accurately to irregular defects. Moreover, combining CS with other naturally derived or synthetic polymers and bioactive materials has displayed its effectiveness as a feasible substitute for traditional grafts. We aim to spotlight the composition, production, and physicochemical characteristics and practical utilization of CS-based injectable hydrogels, explicitly focusing on their potential implementations in bone regeneration. We consider this review a fundamental resource and a source of inspiration for future research attempts to pioneer the next era of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Gayatri Vaidya
- Department of Studies and Research in Food Technology, Davangere University, Davangere, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Ahmed Raheem Rayshan
- Department of Physiology, Pharmacology, and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Jacob Michaelson
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
10
|
Bakhrushina EO, Mikhel IB, Buraya LM, Moiseev ED, Zubareva IM, Belyatskaya AV, Evzikov GY, Bondarenko AP, Krasnyuk II, Krasnyuk II. Implantation of In Situ Gelling Systems for the Delivery of Chemotherapeutic Agents. Gels 2024; 10:44. [PMID: 38247767 PMCID: PMC10815592 DOI: 10.3390/gels10010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Implantation is a modern method of administering chemotherapeutic agents, with a highly targeted effect and better patient tolerance due to the low frequency of administration. Implants are capable of controlled release, which makes them a viable alternative to infusional chemotherapy, allowing patients to enjoy a better quality of life without the need for prolonged hospitalization. Compared to subcutaneous implantation, intratumoral implantation has a number of significant advantages in terms of targeting and side effects, but this area of chemotherapy is still poorly understood in terms of clinical trials. At the same time, there are more known developments of drugs in the form of implants and injections for intratumoral administration. The disadvantages of classical intratumoral implants are the need for surgical intervention to install the system and the increased risk of tumor rupture noted by some specialists. The new generation of implants are in situ implants-systems formed in the tumor due to a phase transition (sol-gel transition) under the influence of various stimuli. Among this systems some are highly selective for a certain type of malignant neoplasm. Such systems are injected and have all the advantages of intratumoral injections, but due to the phase transition occurring in situ, they form depot forms that allow the long-term release of chemotherapeutic agents.
Collapse
Affiliation(s)
- Elena O. Bakhrushina
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Iosif B. Mikhel
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Liliya M. Buraya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Egor D. Moiseev
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Irina M. Zubareva
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Anastasia V. Belyatskaya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Grigory Y. Evzikov
- Department of Nervous Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | | | - Ivan I. Krasnyuk
- Department of Analytical, Physical and Colloidal Chemistry, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | - Ivan I. Krasnyuk
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| |
Collapse
|
11
|
Holiel AA, Sedek EM. Marginal adaptation, physicochemical and rheological properties of treated dentin matrix hydrogel as a novel injectable pulp capping material for dentin regeneration. BMC Oral Health 2023; 23:938. [PMID: 38017480 PMCID: PMC10683231 DOI: 10.1186/s12903-023-03677-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Treated dentin matrix hydrogel (TDMH) has been introduced as a novel injectable direct pulp capping material. In this regard, this study aimed to evaluate its marginal adaptation, physicochemical and rheological properties for the development of clinically feasible TDMH. METHODS TDMH was applied to the pulp floor of prepared Class I cavities (n = 5), marginal adaptation was assessed by SEM at 1000 X magnification to detect gap between dentin and filling material. Five syringes were filled with TDMH and placed between the compression plates of a universal testing machine to evaluate injectability and gelation time was also evaluated by test vial inverting method. The microstructures of lyophilized TDMH were observed by SEM. Moreover, TDMH discs (n = 5) were prepared and the water uptake (%) was determined based on the equilibrium swelling theory state of hydrogels. Its solubility was measured after one week by the ISO standard method. Rheological behaviours of TDMH (n = 5) were analysed with a rotational rheometer by computing their complex shear modulus G* and their associated storage modulus (G') and loss modulus (G''). Statistical analysis was performed using F test (ANOVA) with repeated measures and Post Hoc Test (p = 0.05). RESULTS TDMH presented an overall 92.20 ± 2.95% of continuous margins. It exhibited gelation during the first minute, and injectability mean was 66 ± 0.36%. TDMH showed a highly porous structure, and the pores were interconnected with an average diameter about 5.09 ± 3.17 μm. Swelling equilibrium gradually reached at 6 days up to 377%. The prepared hydrogels and maintained their shape after absorbing over three times their original weight of water. TDMH fulfilled the requirements of ISO 6876, demonstrating a weight loss of 1.98 ± 0.09% and linear viscoelastic behaviour with G` 479.2 ± 12.7 and G`` 230.8 ± 13.8. CONCLUSIONS TDMH provided good marginal adaptation, appropriate physicochemical and viscoelastic properties support its use as a novel direct pulp capping material in future clinical applications.
Collapse
Affiliation(s)
- Ahmed A Holiel
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Liao J, Wang Y, Hou B, Zhang J, Huang H. Nano-chitin reinforced agarose hydrogels: Effects of nano-chitin addition and acidic gas-phase coagulation. Carbohydr Polym 2023; 313:120902. [PMID: 37182930 DOI: 10.1016/j.carbpol.2023.120902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
Hydrogels based on natural polymers such as agarose usually show low applicability due to their weak mechanical properties. In this work, we developed a dual cross-linked agarose hydrogel by adding different amounts of TEMPO-oxidized nano-chitin (0-0.2 %) to agarose hydrogel matrices and then physically cross-linked under acidic gas-phase coagulation. The prepared hydrogels were characterized by FTIR, XRD, TGA, and SEM. The effects of nano-chitin addition and acidic gas-phase coagulation on the properties of agarose hydrogels, such as gel strength, swelling degree, rheological properties, and methylene blue (MB) adsorption capacity, were also studied. Structural characterizations confirmed that nano-chitin was successfully introduced into agarose hydrogels. The gel strength, storage modulus, and MB adsorption capacity of agarose hydrogels gradually increased with the increasing nano-chitin addition, whereas the swelling degree decreased. After acidic gas-phase coagulation, agarose/nano-chitin nanocomposite hydrogels exhibited improved gel strength and storage modulus, while the swelling degree and MB adsorption capacity were slightly reduced. The combination of oxidized nano-chitin and acidic gas-phase coagulation is expected to be an effective way to improve the properties of natural polymer hydrogels.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China.
| | - Yijin Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bo Hou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
13
|
Yu S, Huang Y, Shen B, Zhang W, Xie Y, Gao Q, Zhao D, Wu Z, Liu Y. Peptide hydrogels: Synthesis, properties, and applications in food science. Compr Rev Food Sci Food Saf 2023; 22:3053-3083. [PMID: 37194927 DOI: 10.1111/1541-4337.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Due to the unique and excellent biological, physical, and chemical properties of peptide hydrogels, their application in the biomedical field is extremely wide. The applications of peptide hydrogels are closely related to their unique responsiveness and excellent properties. However, its defects in mechanical properties, stability, and toxicity limit its application in the food field. In this review, we focus on the fabrication methods of peptide hydrogels through the physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by the incorporation with materials is discussed. Meanwhile, the excellent properties of peptide hydrogels such as the stimulus responsiveness, biocompatibility, antimicrobial properties, rheology, and stability are reviewed. Finally, the application of peptide hydrogel in the food field is summarized and prospected.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yueying Huang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Biao Shen
- Zhoushan Customs District, Zhoushan, P. R. China
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Qi Gao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Li Z, Lu F, Liu Y. A Review of the Mechanism, Properties, and Applications of Hydrogels Prepared by Enzymatic Cross-linking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390351 DOI: 10.1021/acs.jafc.3c01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Hydrogels, as biological materials, are widely used in food, tissue engineering, and biomedical applications. Nevertheless, many issues remain in the preparation of hydrogels by physical and chemical methods, such as low bioaffinity, weak mechanical properties, and unstable structures, which also limit their applications in other fields. However, the enzymatic cross-linking method has the advantages of high catalytic efficiency, mild reaction conditions, and the presence of nontoxic substances. In this review, we evaluated the chemical, physical, and biological methods of preparing hydrogels and introduced three common cross-linking enzymes and their principles for preparing hydrogels. This review introduced the applications and properties of hydrogels prepared by the enzymatic method and also provided some suggestions regarding the current situation and future development of hydrogels prepared by enzymatic cross-linking.
Collapse
Affiliation(s)
- Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
15
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
16
|
Bai X, Sun X, Yu Y, Guo Y, Nian L, Cao C, Cheng S. Immobilization of α-galactosidase in polyvinyl alcohol-chitosan-glycidyl methacrylate hydrogels based on directional freezing-assisted salting-out strategy for hydrolysis of RFOs. Int J Biol Macromol 2023; 242:124808. [PMID: 37211074 DOI: 10.1016/j.ijbiomac.2023.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Raffinose family oligosaccharides (RFOs) in food are the main factors causing flatulence in Irritable Bowel Syndrome (IBS) patients and the development of effective approaches for reducing food-derived RFOs is of paramount importance. In this study, polyvinyl alcohol (PVA)-chitosan (CS)-glycidyl methacrylate (GMA) immobilized α-galactosidase was prepared by the directional freezing-assisted salting-out technique, aimed to hydrolyze RFOs. SEM, FTIR, XPS, fluorescence and UV characterization results demonstrated that α-galactosidase was successfully cross-linked in the PVA-CS-GMA hydrogels, forming a distinct porous stable network through the covalent bond between the enzyme and the carrier. Mechanical performance and swelling capacity analysis illustrated that α-gal @ PVA-CS-GMA not only had suitable strength and toughness for longer durability, but also exhibited high water content and swelling capacity for better retention of catalytic activity. The enzymatic properties of α-gal @ PVA-CS-GMA showed an improved Km value, pH and temperature tolerance range, anti-enzymatic inhibitor (melibiose) activity compared to the free α-galactosidase and its reusability was at least 12 times with prolonged storage stability. Finally, it was successfully applied in the hydrolysis of RFOs in soybeans. These findings provide a new strategy for the development of α-galactosidase immobilization system to biological transform the RFOs components in the food for diet intervention of IBS.
Collapse
Affiliation(s)
- Xixi Bai
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyang Sun
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Yu
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuheng Guo
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Linyu Nian
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
17
|
Li X, Xu M, Geng Z, Liu Y. Functional hydrogels for the repair and regeneration of tissue defects. Front Bioeng Biotechnol 2023; 11:1190171. [PMID: 37260829 PMCID: PMC10227617 DOI: 10.3389/fbioe.2023.1190171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Tissue defects can be accompanied by functional impairments that affect the health and quality of life of patients. Hydrogels are three-dimensional (3D) hydrophilic polymer networks that can be used as bionic functional tissues to fill or repair damaged tissue as a promising therapeutic strategy in the field of tissue engineering and regenerative medicine. This paper summarises and discusses four outstanding advantages of hydrogels and their applications and advances in the repair and regeneration of tissue defects. First, hydrogels have physicochemical properties similar to the extracellular matrix of natural tissues, providing a good microenvironment for cell proliferation, migration and differentiation. Second, hydrogels have excellent shape adaptation and tissue adhesion properties, allowing them to be applied to a wide range of irregularly shaped tissue defects and to adhere well to the defect for sustained and efficient repair function. Third, the hydrogel is an intelligent delivery system capable of releasing therapeutic agents on demand. Hydrogels are capable of delivering therapeutic reagents and releasing therapeutic substances with temporal and spatial precision depending on the site and state of the defect. Fourth, hydrogels are self-healing and can maintain their integrity when damaged. We then describe the application and research progress of functional hydrogels in the repair and regeneration of defects in bone, cartilage, skin, muscle and nerve tissues. Finally, we discuss the challenges faced by hydrogels in the field of tissue regeneration and provide an outlook on their future trends.
Collapse
|
18
|
Li W, Fang K, Yuan H, Li D, Li H, Chen Y, Luo X, Zhang L, Ye X. Acid-induced Poria cocos alkali-soluble polysaccharide hydrogel: Gelation behaviour, characteristics, and potential application in drug delivery. Int J Biol Macromol 2023; 242:124383. [PMID: 37030457 DOI: 10.1016/j.ijbiomac.2023.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Poria cocos alkali-soluble polysaccharide (PCAP), a water-insoluble β-glucan, is the main component of the total dried sclerotia of Poria cocos. However, its gelation behaviour and properties have yet to be comprehensively studied. In this study, an acid-induced physical hydrogel based on natural PCAP is fabricated. The acid-induced gelation in PCAP is explored with respect to the pH and polysaccharide concentration. PCAP hydrogels are formed in the pH range of 0.3-10.5, and the lowest gelation concentration is 0.4 wt%. Furthermore, dynamic rheological, fluorescence, and cyclic voltammetry measurements are performed to elucidate the gelation mechanism. The results reveal that hydrogen bonds and hydrophobic interactions play a dominant role in gel formation. Subsequently, the properties of the PCAP hydrogels are investigated using rheological measurements, scanning electron microscopy, gravimetric analysis, free radical scavenging, MTT assays, and enzyme-linked immunosorbent assays. The PCAP hydrogels exhibit a porous network structure and cytocompatibility, in addition to good viscoelastic, thixotropic, water-holding, swelling, antioxidant, and anti-inflammatory activities. Furthermore, using rhein as a model drug for encapsulation, it is demonstrated that its cumulative release behaviour from the PCAP hydrogel is pH dependent. These results indicate the potential of PCAP hydrogels for application in biological medicine and drug delivery.
Collapse
Affiliation(s)
- Wan Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Kexin Fang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongru Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haochen Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyao Luo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lian Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaochuan Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
19
|
Wang M, Muhammad T, Gao H, Liu J, Liang H. Targeted pH-responsive chitosan nanogels with Tanshinone IIA for enhancing the antibacterial/anti-biofilm efficacy. Int J Biol Macromol 2023; 237:124177. [PMID: 36972823 DOI: 10.1016/j.ijbiomac.2023.124177] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Persistent bacterial infection caused by biofilms is one of the most serious problems that threatened human health. The development of antibacterial agents remains a challenge to penetrate biofilm and effectively treat the underlying bacterial infection. In the current study, chitosan-based nanogels were developed for encapsulating the Tanshinone IIA (TA) to enhance the antibacterial and anti-biofilm efficacy against Streptococcus mutans (S. mutans). The as-prepared nanogels (TA@CS) displayed excellent encapsulation efficiency (91.41 ± 0.11 %), uniform particle sizes (393.97 ± 13.92 nm), and enhanced positive potential (42.27 ± 1.25 mV). After being coated with CS, the stability of TA under light and other harsh environments was greatly improved. In addition, TA@CS displayed pH responsiveness, allowing it to selectively release more TA in acidic conditions. Furthermore, the positively charged TA@CS were equipped to target negatively charged biofilm surfaces and efficiently penetrate through biofilm barriers, making it promising for remarkable anti-biofilm activity. More importantly, when TA was encapsulated into CS nanogels, the antibacterial activity of TA was enhanced at least 4-fold. Meanwhile, TA@CS inhibited 72 % of biofilm formation at 500 μg/mL. The results demonstrated that the nanogels constituted CS and TA had antibacterial/anti-biofilm properties with synergistic enhanced effects, which will benefit pharmaceutical, food, and other fields.
Collapse
Affiliation(s)
- Mingxia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tariq Muhammad
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huiling Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianzhang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao 066000, China.
| |
Collapse
|
20
|
Zhu S, Xu W, Liu J, Guan F, Xu A, Zhao J, Ge J. Preparation of microgel co-loaded with nuciferine and epigallocatechin-3-gallate for the regulation of lipid metabolism. Front Nutr 2022; 9:1069797. [PMID: 36579075 PMCID: PMC9790983 DOI: 10.3389/fnut.2022.1069797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
This study aims to enhance the stability and bioavailability of nuciferine (NF) and epigallocatechin-3-gallate (EGCG) by loading NF into liposomes and then incorporating the liposomes and EGCG into porous microgels (NFEG-microgel) prepared with chitosan and proanthocyanidin. Analysis of particle size (0.5-3.0 μm), electron microscopy, rheology, stability, and simulated gastrointestinal release confirmed that the prepared microgels had high encapsulation rate and good stability and release characteristics. Intervention experiments were performed by orally administering NFEG-microgel to high-fat diet rats to evaluate its efficacy and regulatory mechanism for blood lipid metabolism. NFEG-microgel intervention significantly reduced the body weight and serum lipid level, and the mechanism was related to the expression regulation of key genes involved in lipid metabolism and miRNAs (miR-126a-5p and miR-30b-5p) in serum extracellular vesicles. In addition, NFEG-microgel improved the diversity of gut microbiota by enriching short-chain fatty acids (SCFA)-producing bacteria and reducing harmful bacteria, suggesting that it can ameliorate lipid metabolism by regulating the intestinal flora community in rats.
Collapse
|
21
|
de Lima CSA, Varca JPRO, Alves VM, Nogueira KM, Cruz CPC, Rial-Hermida MI, Kadłubowski SS, Varca GHC, Lugão AB. Mucoadhesive Polymers and Their Applications in Drug Delivery Systems for the Treatment of Bladder Cancer. Gels 2022; 8:gels8090587. [PMID: 36135300 PMCID: PMC9498303 DOI: 10.3390/gels8090587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder cancer (BC) is the tenth most common type of cancer worldwide, affecting up to four times more men than women. Depending on the stage of the tumor, different therapy protocols are applied. Non-muscle-invasive cancer englobes around 70% of the cases and is usually treated using the transurethral resection of bladder tumor (TURBIT) followed by the instillation of chemotherapy or immunotherapy. However, due to bladder anatomy and physiology, current intravesical therapies present limitations concerning permeation and time of residence. Furthermore, they require several frequent catheter insertions with a reduced interval between doses, which is highly demotivating for the patient. This scenario has encouraged several pieces of research focusing on the development of drug delivery systems (DDS) to improve drug time residence, permeation capacity, and target release. In this review, the current situation of BC is described concerning the disease and available treatments, followed by a report on the main DDS developed in the past few years, focusing on those based on mucoadhesive polymers as a strategy. A brief review of methods to evaluate mucoadhesion properties is also presented; lastly, different polymers suitable for this application are discussed.
Collapse
Affiliation(s)
- Caroline S. A. de Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
- Correspondence:
| | - Justine P. R. O. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Victória M. Alves
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Kamila M. Nogueira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Cassia P. C. Cruz
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - M. Isabel Rial-Hermida
- I+D Farma Group (GI-1645), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sławomir S. Kadłubowski
- Institute of Applied Radiation Chemistry (IARC), Lodz University of Technology, Wroblewskiego No. 15, 93-590 Lodz, Poland
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| |
Collapse
|
22
|
Fan Z, Cheng P, Zhang P, Gao Y, Zhao Y, Liu M, Gu J, Wang Z, Han J. A novel multifunctional Salecan/κ-carrageenan composite hydrogel with anti-freezing properties: Advanced rheology, thermal analysis and model fitting. Int J Biol Macromol 2022; 208:1-10. [PMID: 35299074 DOI: 10.1016/j.ijbiomac.2022.03.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
The multifunctional hydrogels (HGs) have attracted intensive concern in biomedicine, food, and flexible devices. Nevertheless, chemically crosslinked synthetic HGs are commonly under specific restrictions because of their possible biotoxicity. This study focuses on the employment of physical approaches to prepare novel Salecan/κ-carrageenan composites HGs (CHGs) without changing their basic structures. Comprehensive rheological and thermal studies have been performed to investigate their distinctive properties. The data obtained from the tests and model fitting confirmed that the highest activation energy of CHGs was 172,142.2 J/mol, and the maximum equilibrium creep compliance was 0.0085 1/Pa. The sample recovery rate could reach 92.6%, while the anti-freezing temperature can be as low as -20 °C. It is the first report focusing on novel CHGs made from Salecan and κ-carrageenan with ideal anti-freezing ability, enhanced thermostability, good injectability, self-recovery, and other rheological properties that will provide effective support for various future applications.
Collapse
Affiliation(s)
- Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Ping Cheng
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, China
| | - Pan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yan Gao
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jiahui Gu
- Anton Paar (Shanghai) Trading Co., Ltd, Shanghai 201103, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
23
|
Lv M, Du Y, Zhang T, Du X, Yin X. Cassava Starch-Based Thermo-Responsive Pb(II)-Imprinted Material: Preparation and Adsorption Performance on Pb(II). Polymers (Basel) 2022; 14:828. [PMID: 35215742 PMCID: PMC8963116 DOI: 10.3390/polym14040828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Heavy metal pollution is currently an increasing threat to the ecological environment, and the development of novel absorbents with remarkable adsorption performance and cost-effectiveness are highly desired. In this study, a cassava starch-based Pb(II)-imprinted thermo-responsive hydrogel (CPIT) had been prepared by using cassava starch as the bio-substrate, N-isopropyl acrylamide (NIPAM) as the thermo-responsive monomer, and Pb(II) as the template ions. Later, a variety of modern techniques including FTIR, DSC, SEM, and TGA were employed to comprehensively analyze the characteristic functional groups, thermo-responsibility, morphology, and thermal stability of CPIT. The obtained material exhibited superior performance in adsorption of Pb(II) and its maximum adsorption capacity was high-up to 114.6 mg/g under optimized conditions. Notably, the subsequent desorption (regeneration) process was fairly convenient by simply rinsing with cold deionized water and the highest desorption efficiency could be achieved as 93.8%. More importantly, the adsorption capacity of regenerated CPIT still maintained 88.2% of the value of starting material even after 10 recyclings. In addition, the excellence of CPIT in selective adsorption of Pb(II) should also be highlighted as its superior adsorption ability (97.9 mg/g) over the other seven interfering metal ions.
Collapse
Affiliation(s)
| | | | | | - Xueyu Du
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| |
Collapse
|
24
|
|
25
|
Effect of Ca 2+ cross-linking on the properties and structure of lutein-loaded sodium alginate hydrogels. Int J Biol Macromol 2021; 193:53-63. [PMID: 34688674 DOI: 10.1016/j.ijbiomac.2021.10.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022]
Abstract
In order to construct nano-lutein hydrogels with sustained release properties, the basic properties and structure of nano-lutein hydrogels cross-linked with different concentrations of Ca2+ were investigated. The results showed that the highest loading capacity for lutein reached 770.88 μg/g, while the encapsulation efficiency was as high as 99.39%. When Ca2+ concentration was lower than 7.5 mM, the filling of lutein nanoparticles reduced the hardness and gumminess of the hydrogel. The resilience and cohesiveness of the hydrogel decreased as the concentration of Ca2+ increased. Filling with lutein nanoparticles and increasing Ca2+ concentration both increased the G' and G″. The hydrogel loaded with lutein showed different swelling properties in different pH environments, the filling of lutein nanoparticles inhibited the swelling of the hydrogel. When Ca2+ concentration was greater than 7.5 mM, the cut-off amount of lutein on the surface of the Ca2+ cross-linked hydrogel was larger. The digestive enzymes quickly degraded the hydrogel structure, resulting in a high initial release of lutein. DSC and FTIR results showed that lutein nanoparticles were mainly physically trapped in the hydrogel network structure. Lutein nanoparticles and excessive Ca2+ affected the stability of cross-linked ionic bonds in the hydrogel, thereby reducing its thermodynamic stability.
Collapse
|
26
|
Rheological investigation of a versatile salecan/curdlan gel matrix. Int J Biol Macromol 2021; 193:2202-2209. [PMID: 34780896 DOI: 10.1016/j.ijbiomac.2021.11.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Hydrogel, as a three-dimensional material with high water content, has unique physicochemical and variable mechanical properties. Natural polysaccharide-based composite hydrogels are very popular within medical industry as these viscoelastic materials are non-toxic, biodegradable, bioabsorbable, and biocompatible. This research investigates the engineering of novel composite hydrogels from natural polysaccharides salecan and curdlan without any structural modification and chemical crosslinking. The scanning electron microscopy, Fourier transform infrared spectroscopy and various rheological methods were employed to investigate the morphology, molecular interaction, and flow behavior of the samples respectively. The key rheological parameters were compared using the Power Law, Herschel-Bulkley and Arrhenius models. This is the first study reporting a novel composite hydrogel made from Salecan and Curdlan with ideal elasticity, enhanced thermostability, good injectability, self-recovery and other rheological properties that will pave the way for application in different fields.
Collapse
|