1
|
Di SC, Chen WJ, Yang W, Zhang XM, Dong KQ, Tian YJ, Sun Y, Qian C, Chen JX, Liu ZC, Gong ZX, Chu J, Zhou W, Pan XW, Cui XG. DEPDC1 as a metabolic target regulates glycolysis in renal cell carcinoma through AKT/mTOR/HIF1α pathway. Cell Death Dis 2024; 15:533. [PMID: 39068164 PMCID: PMC11283501 DOI: 10.1038/s41419-024-06913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Renal cell carcinoma (RCC) is considered a "metabolic disease" characterized by elevated glycolysis in patients with advanced RCC. Tyrosine kinase inhibitor (TKI) therapy is currently an important treatment option for advanced RCC, but drug resistance may develop in some patients. Combining TKI with targeted metabolic therapy may provide a more effective approach for patients with advanced RCC. An analysis of 14 RCC patients (including three needle biopsy samples with TKI resistance) revealed by sing-cell RNA sequencing (scRNA-seq) that glycolysis played a crucial role in poor prognosis and drug resistance in RCC. TCGA-KIRC and glycolysis gene set analysis identified DEPDC1 as a target associated with malignant progression and drug resistance in KIRC. Subsequent experiments demonstrated that DEPDC1 promoted malignant progression and glycolysis of RCC, and knockdown DEPDC1 could reverse TKI resistance in RCC cell lines. Bulk RNA sequencing (RNA-seq) and non-targeted metabolomics sequencing suggested that DEPDC1 may regulate RCC glycolysis via AKT/mTOR/HIF1α pathway, a finding supported by protein-level analysis. Clinical tissue samples from 98 RCC patients demonstrated that DEPDC1 was associated with poor prognosis and predicted RCC metastasis. In conclusion, this multi-omics analysis suggests that DEPDC1 could serve as a novel target for TKI combined with targeted metabolic therapy in advanced RCC patients with TKI resistance.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/drug therapy
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic
- Glycolysis/drug effects
- GTPase-Activating Proteins/metabolism
- GTPase-Activating Proteins/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Mice, Nude
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Si-Chen Di
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wen-Jin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wei Yang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiang-Min Zhang
- Department of Urology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Ke-Qin Dong
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, China
| | - Yi-Jun Tian
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ye Sun
- Department of Urology, Taian 88 Hospital, Taian, Shandong, China
| | - Cheng Qian
- Department of Urology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Jia-Xin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Chang Liu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Xuan Gong
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jian Chu
- Department of Urology, Shanghai Baoshan Luodian Hospital, Shanghai, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiu-Wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xin-Gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
2
|
Cheng Q, Shi X, Li Q, Wang L, Wang Z. Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305662. [PMID: 37941489 PMCID: PMC10797484 DOI: 10.1002/advs.202305662] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Increasing numbers of studies have shown that tumor cells prefer fermentative glycolysis over oxidative phosphorylation to provide a vast amount of energy for fast proliferation even under oxygen-sufficient conditions. This metabolic alteration not only favors tumor cell progression and metastasis but also increases lactate accumulation in solid tumors. In addition to serving as a byproduct of glycolytic tumor cells, lactate also plays a central role in the construction of acidic and immunosuppressive tumor microenvironment, resulting in therapeutic tolerance. Recently, targeted drug delivery and inherent therapeutic properties of nanomaterials have attracted great attention, and research on modulating lactate metabolism based on nanomaterials to enhance antitumor therapy has exploded. In this review, the advanced tumor therapy strategies based on nanomaterials that interfere with lactate metabolism are discussed, including inhibiting lactate anabolism, promoting lactate catabolism, and disrupting the "lactate shuttle". Furthermore, recent advances in combining lactate metabolism modulation with other therapies, including chemotherapy, immunotherapy, photothermal therapy, and reactive oxygen species-related therapies, etc., which have achieved cooperatively enhanced therapeutic outcomes, are summarized. Finally, foreseeable challenges and prospective developments are also reviewed for the future development of this field.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Xiao‐Lei Shi
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Qi‐Lin Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| |
Collapse
|
3
|
MicroRNA 101 Attenuated NSCLC Proliferation through IDH2/HIFα Axis Suppression in the Warburg Effect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4938811. [PMID: 36304962 PMCID: PMC9596240 DOI: 10.1155/2022/4938811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer is the most diagnosed and deadly cancer in China. MicroRNAs are small noncoding RNA gene products that exhibit multifunctional regulation in cancer cell progressions. MiR-101 loss was illustrated in about 29% of lung cancer patients, and sophisticated mechanisms of miR-101 regulation in NSCLC are eager to be disclosed. Here, using specimens from NSCLC patients and Dural-luciferase reporter assay, we got a clue that miR-101 correlated with IDH2. MiR-101 overexpression and IDH2 deficiency both suppressed NSCLC tumor growth in mice. Moreover, in NSCLC, miR-101 suppressed IDH2 expression levels, further increased α-KG concentration, and finally inhibited the Warburg effect under hypoxic conditions through downregulating HIF1α expression by promoting HIF1α hydroxylation and degradation. In conclusion, miR-101 attenuated the Warburg effect and NSCLC proliferation through IDH2/HIF1α pathway.
Collapse
|
4
|
Yang J, Zhao Y, Zhou Y, Wei X, Wang H, Si N, Yang J, Zhao Q, Bian B, Zhao H. Advanced nanomedicines for the regulation of cancer metabolism. Biomaterials 2022; 286:121565. [DOI: 10.1016/j.biomaterials.2022.121565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022]
|
5
|
Tang M, Ren X, Fu C, Ding M, Meng X. Regulating glucose metabolism using nanomedicines for cancer therapy. J Mater Chem B 2021; 9:5749-5764. [PMID: 34196332 DOI: 10.1039/d1tb00218j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of glucose metabolism is a research focus in cancer treatment. Glucose metabolism is essential for maintaining the growth and proliferation of tumor cells, thus offering us great opportunities for tumor treatment. Recently, much progress has been made in efficient cancer treatment by regulating the pathway of glucose metabolism with nanomedicines due to the rapid development of nanotechnology and promising drug targets. In this review, we first introduced the pathway of cell energy supply from the perspective of aerobic and anaerobic processes. Then, we discussed the recent research progress in regulating glucose metabolism for various tumor resistance strategies including heat resistance, multiple drug resistance, and hypoxia. Finally, we presented the prospects and challenges of developing multifunctional nanoagents for efficient chemotherapy, hyperthermia, dynamic therapy and so on by regulating glucose metabolism.
Collapse
Affiliation(s)
- Ming Tang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China and Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and Key Laboratory of Super Light Material and Surface Technology Ministry of Education, Harbin Engineering University, Harbin 150001, China and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minghui Ding
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China and Key Laboratory of Super Light Material and Surface Technology Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|