1
|
Zhang P, Mao XA, Kong XL, Gong JS, Wang ZK, Su C, Li H, Zhang XM, Rao ZM, Xu ZH, Shi JS. Rational design of phospholipase D to enhance thermostability and catalytic activity for efficient biocatalytic phosphatidylserine synthesis. Food Chem 2025; 474:143212. [PMID: 39923523 DOI: 10.1016/j.foodchem.2025.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Phospholipase D (PLD) is an essential enzyme for the enzymatic synthesis of phosphatidylserine (PS), but its widespread application is limited by its low stability and activity. Herein, a highly active and thermostable multi-mutant PLDM4 was obtained through a comprehensive strategy based on various computer-aided mutant design and systematic clustering analysis, extending its half-life from 3.7 to 89.8 min and enhancing its activity from 42.7 to 413.1 U/mL. The PLDM4 exhibited a higher PS synthesis efficiency in water-organic solvent system, reaching 119.1 g/L. The synthesis of PS within various edible oils was also achieved, producing PS-enriched edible oils (approximately 19.8 g/L) and creating opportunities to construct food grade PLD-mediated reaction system. These results highlight the proposed method providing an efficient tool and a promising mutant with enhanced thermal stability and activity, and expand the practical application of PLD in the food industry.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xin-An Mao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Li Kong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Zi-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Zhi-Ming Rao
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
2
|
Kamble A, Singh R, Singh H. Structural and Functional Characterization of Obesumbacterium proteus Phytase: A Comprehensive In-Silico Study. Mol Biotechnol 2025; 67:588-616. [PMID: 38393631 DOI: 10.1007/s12033-024-01069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024]
Abstract
Phytate, also known as myoinositol hexakisphosphate, exhibits anti-nutritional properties and possesses a negative environmental impact. Phytase enzymes break down phytate, showing potential in various industries, necessitating thorough biochemical and computational characterizations. The present study focuses on Obesumbacterium proteus phytase (OPP), indicating its similarities with known phytases and its potential through computational analyses. Structure, functional, and docking results shed light on OPP's features, structural stability, strong and stable interaction, and dynamic conformation, with flexible sidechains that could adapt to different temperatures or specific functions. Root Mean Square fluctuation (RMSF) highlighted fluctuating regions in OPP, indicating potential sites for stability enhancement through mutagenesis. The systematic approach developed here could aid in enhancing enzyme properties via a rational engineering approach. Computational analysis expedites enzyme discovery and engineering, complementing the traditional biochemical methods to accelerate the quest for superior enzymes for industrial applications.
Collapse
Affiliation(s)
- Asmita Kamble
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (W), Mumbai, Maharashtra, India
| | - Rajkumar Singh
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, Lausanne, Switzerland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (W), Mumbai, Maharashtra, India.
| |
Collapse
|
3
|
Nezhad NG, Eskandari A, Omotayo OF, Albayati SH, Buhari SB, Leow TC. In Silico Structural Insights into a Glucanase from Clostridium perfringens and Prediction of Structural Stability Improvement Through Hydrophobic Interaction Network and Aromatic Interaction. Mol Biotechnol 2025:10.1007/s12033-025-01371-2. [PMID: 39812996 DOI: 10.1007/s12033-025-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation. Furthermore, we aimed to enhance structural stabilization through formation of hydrophobic interaction network. The molecular docking results illustrated that residues Glu222 and Asp187 may act as nucleophile acid/base catalyst. Moreover, the MM/PBSA results illustrated a high binding affinity of 108.71 ± 8.5 kJ/mol between glucanase and barely glucan during 100 ns simulation. The RMSF analysis illustrated a high flexible surface loop with the highest mobility at position D130. Therefore, the structural engineering was carried out through introducing a double-mutant S125Y/D130P, and the structural stability was improved by forming the hydrophobic interaction network and one π-π aromatic interaction. The spatial distance between the mutation sites and the catalytic pocket attenuates their direct impact on binding interactions within the catalytic pocket.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Azadeh Eskandari
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Oluwaloni Folusho Omotayo
- Department of Biotechnology, Federal Institute of Industrial Research Oshodi, P.M.B 21023, Ikeja, Lagos, Nigeria
| | - Samah Hashim Albayati
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sunusi Bataiya Buhari
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Song C, Luo J, Qiao J, Liu Z, Cheng Z, Wang Q, Zhou Z, Han L. Discovery and characterization of temperature adaptation modules by mining L-glutamate decarboxylase derived from psychrophilic microorganisms. Int J Biol Macromol 2024; 282:136725. [PMID: 39433187 DOI: 10.1016/j.ijbiomac.2024.136725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Directed alterations of the enzyme's temperature adaptations, such as thermostability and optimal catalytic temperature (Topt), are usually the way to go in order to meet the applications, however they are limited by the understanding between protein structure and function. Glutamate decarboxylase (GADs) is a common enzyme in the food industry. In this study, we identified and characterized three novel L-glutamate decarboxylases from psychrophilic microorganisms. Interestingly, the two enzymes (Gad Psy.Y/Gad Psy.F) showed significant differences in temperature adaptation. Through multiple sequence alignment and structural analysis, two potential regions that may affect the Topt and thermostability of the GAD, termed temperature adaptation modules (TAMs), were targeted. To validate the role of TAMs, we constructed mutants with bi-directional transplants of TAMs, which ultimately significantly altered the temperature adaptation of Gad Psy.Y and Gad Psy.F. Molecular dynamics simulations analysis demonstrated that the introduction and disruption of salt bridges in the mutant TAMs are crucial for this alteration. These findings deepen the understanding of the mechanisms of protein temperature adaptation and provide implications for protein engineering, while also offering advantageous enzymes to support the biosynthesis of GABA.
Collapse
Affiliation(s)
- Chenshuo Song
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Luo
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Qiao
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiong Wang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China.
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
Li Q, Wang H, Zhang W, Wang W, Ren X, Wu M, Shi G. Structure-Guided Evolution Modulate Alcohol Oxidase to Improve Ethanol Oxidation Performance. Appl Biochem Biotechnol 2024; 196:1948-1965. [PMID: 37453026 DOI: 10.1007/s12010-023-04626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A high ethanol usage of alcohol oxidase (AOX) was required in industry. In this study, a "expand substrate pocket" strategy achieved a high activity AOX from Hansenula polymorpha (H. polymorpha) by Phe to Val residue (F/V) site-directed mutation to enlarge ethanol channel. Although H. Polymorpha AOX (HpAOX) possessed respectively 71.3% and 76.1% similarity with AOX (PpAOX) from Pichia pastoris (P. pastoris) in DNA and protein sequences, their active site structures including catalytic site and substrate channel were similar according to computer-aided analysis. After 3D structure analysis, Phe99 residue of their substrate channels was the most important residue to impact enzyme activity because of its large aromatic side chains. F99V mutation of HpAOX (HpAOXF99V) was designed and executed based on the enzyme catalytic mechanism and molecular computation in order to allow more larger size ethanol into active site. The highest enzyme activity of the fourth strains of HpAOXF99V mutant strain exhibited 12.06-folds increase than that of the host GS115 strain. Furthermore, kinetic studies indicated that the HpAOXF99V significantly promoted catalytic efficiency of ethanol than HpAOX, including Km, Vmax, kcat and kcat/Km. We also provided a new insight that the cofactor FAD irritated both active AOX octamer biosynthesis production and enzyme-catalysed ability due to help enzyme assembly and redox potential.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haiou Wang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Wenxiao Zhang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wenxuan Wang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyu Ren
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengyao Wu
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guoqing Shi
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
6
|
Li L, Liu X, Bai Y, Yao B, Luo H, Tu T. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3833-3845. [PMID: 38285533 DOI: 10.1021/acs.jafc.3c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The acquisition of a thermostable enzyme is an indispensable prerequisite for its successful implementation in industrial applications and the development of novel functionalities. Various protein engineering approaches, including rational design, semirational design, and directed evolution, have been employed to enhance thermostability. However, all of these approaches require sensitive and reliable high-throughput screening (HTS) technologies to efficiently and rapidly identify variants with improved properties. While numerous reviews focus on modification strategies for enhancing enzyme thermostability, there is a dearth of literature reviewing HTS methods specifically aimed at this objective. Herein, we present a comprehensive overview of various HTS methods utilized for modifying enzyme thermostability across different screening platforms. Additionally, we highlight significant recent examples that demonstrate the successful application of these methods. Furthermore, we address the technical challenges associated with HTS technologies used for screening thermostable enzyme variants and discuss valuable perspectives to promote further advancements in this field. This review serves as an authoritative reference source offering theoretical support for selecting appropriate screening strategies tailored to specific enzymes with the aim of improving their thermostability.
Collapse
Affiliation(s)
- Lanxue Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Zhang C, Gao W, Song Z, Dong M, Lin H, Zhu G, Lian M, Xiao Y, Lu F, Wang F, Liu Y. Computation-Aided Phylogeny-Oriented Engineering of β-Xylosidase: Modification of "Blades" to Enhance Stability and Activity for the Bioconversion of Hemicellulose to Produce Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2678-2688. [PMID: 38273455 DOI: 10.1021/acs.jafc.3c08518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hemicellulose is a highly abundant, ubiquitous, and renewable natural polysaccharide, widely present in agricultural and forestry residues. The enzymatic hydrolysis of hemicellulose has generally been accomplished using β-xylosidases, but concomitantly increasing the stability and activity of these enzymes remains challenging. Here, we rationally engineered a β-xylosidase from Bacillus clausii to enhance its stability by computation-aided design combining ancestral sequence reconstruction and structural analysis. The resulting combinatorial mutant rXYLOM25I/S51L/S79E exhibited highly improved robustness, with a 6.9-fold increase of the half-life at 60 °C, while also exhibiting improved pH stability, catalytic efficiency, and hydrolytic activity. Structural analysis demonstrated that additional interactions among the propeller blades in the catalytic module resulted in a much more compact protein structure and induced the rearrangement of the opposing catalytic pocket to mediate the observed improvement of activity. Our work provides a robust biocatalyst for the hydrolysis of agricultural waste to produce various high-value-added chemicals and biofuels.
Collapse
Affiliation(s)
- Chenchen Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjing Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhaolin Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengjun Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huixin Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Gang Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengka Lian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
8
|
Li X, Li R, Niu Y, Du M, Yang H, Liu D. Mitigating abortion risk of synthetic musk-contained body wash in pregnant women: Risk assessment and mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122672. [PMID: 37797926 DOI: 10.1016/j.envpol.2023.122672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/26/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Synthetic musks (SMs), the widely used odor component in personal care products have attracted attention due to their environmental impacts, especially the abortion risks. Given that women comprise a significant consumer demographic for personal care products, it is imperative to promptly initiate research on avoidance strategies for pregnant women concerning their exposure to synthetic chemicals (SMs). This study tried to establish novel theoretical approaches to eliminate the abortion risks of SM-contained body wash by designing the SM-contained proportioning scheme and analyzing the abortion risk mechanisms. The binding energy of SMs to estrogen-progesterone protein complex was used as an indicator of the abortion risk. A total of 324 SM-contained body wash proportioning schemes were designed using full factorial design and No. 218 was found as the most effective formula for body wash proportioning with the binding energy value of 68.6 kJ/mol. Results showed the abortion risk could be effectively alleviated (reduced 0.6%-163.4%) by regulating the proportioning scheme of SM-contained body wash. In addition, the mechanism analysis of SM-contained proportioning scheme proportioning scheme found that xanthan gum and disodium EDTA played essential roles in reducing the abortion risk in pregnant women after exposure. The selection of proper body wash components for reducing the abortion risk of SMs on pregnant women was first proposed. It sheds lights on the potential risks of people's daily life and proposes risk-eliminating strategies.
Collapse
Affiliation(s)
- Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3X5, Canada.
| | - Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yong Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Meijin Du
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Di Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
9
|
Rao D, Huo R, Yan Z, Guo Z, Liu W, Lu M, Luo H, Tao X, Yang W, Su L, Chen S, Wang L, Wu J. Multiple approaches of loop region modification for thermostability improvement of 4,6-α-glucanotransferase from Limosilactobacillus fermentum NCC 3057. Int J Biol Macromol 2023; 233:123536. [PMID: 36740130 DOI: 10.1016/j.ijbiomac.2023.123536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
4,6-α-glucanotransferase (4,6-α-GT), as a member of the glycoside hydrolase 70 (GH70) family, converts starch/maltooligosaccharides into α,1-6 bond-containing α-glucan and possesses potential applications in food, medical and related industries but does not satisfy the high-temperature requirement due to its poor thermostability. In this study, a 4,6-α-GT (ΔGtfB) from Limosilactobacillus fermentum NCC 3057 was used as a model enzyme to improve its thermostability. The loops of ΔGtfB as the target region were optimized using directed evolution, sequence alignment, and computer-aided design. A total of 11 positive mutants were obtained and iteratively combined to obtain a combined mutant CM9, with high resistance to temperature (50 °C). The activity of mutant CM9 was 2.08-fold the activity of the wild type, accompanied by a 5 °C higher optimal temperature, a 5.76 °C higher melting point (Tm, 59.46 °C), and an 11.95-fold longer half-life time (t1/2). The results showed that most of the polar residues in the loop region of ΔGtfB are mutated into rigid proline residues. Molecular dynamics simulation demonstrated that the root mean square fluctuation of CM9 significantly decreased by "Breathing" movement reduction of the loop region. This study provides a new strategy for improving the thermostability of 4,6-α-GT through rational loop region modification.
Collapse
Affiliation(s)
- Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Runtian Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhengfei Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weiqiong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mengwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weikang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
10
|
Chi H, Wang Y, Xia B, Zhou Y, Lu Z, Lu F, Zhu P. Enhanced Thermostability and Molecular Insights for l-Asparaginase from Bacillus licheniformis via Structure- and Computation-Based Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14499-14509. [PMID: 36341695 DOI: 10.1021/acs.jafc.2c05712] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
l-Asparaginase has gained much attention for effectively treating acute lymphoblastic leukemia (ALL) and mitigating carcinogenic acrylamide in fried foods. Due to high-dose dependence for clinical treatment and low mitigation efficiency for thermal food processes caused by poor thermal stability, a method to achieve thermostable l-asparaginase has become a critical bottleneck. In this study, a rational design including free energy combined with structural and conservative analyses was applied to engineer the thermostability of l-asparaginase from Bacillus licheniformis (BlAsnase). Two enhanced thermostability mutants D172W and E207A were screened out by site-directed saturation mutagenesis. The double mutant D172W/E207A exhibited highly remarkable thermostability with a 65.8-fold longer half-life at 55 °C and 5 °C higher optimum reaction temperature and melting temperature (Tm) than those of wild-type BlAsnase. Further, secondary structure, sequence, molecular dynamics (MD), and 3D-structure analysis revealed that the excellent thermostability of the mutant D172W/E207A was on account of increased hydrophobicity and decreased flexibility, highly rigid structure, hydrophobic interactions, and favorable electrostatic potential. As the first report of rationally designing l-asparaginase with improved thermostability from B. licheniformis, this study offers a facile and efficient process to improve the thermostability of l-asparaginase for industrial applications.
Collapse
Affiliation(s)
- Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Yilian Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Yawen Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
11
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Qi N, Liu J, Song W, Liu J, Gao C, Chen X, Guo L, Liu L, Wu J. Rational Design of Phospholipase D to Improve the Transphosphatidylation Activity for Phosphatidylserine Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6709-6718. [PMID: 35616637 DOI: 10.1021/acs.jafc.2c02212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phosphatidylserine (PS) has been widely used in the fields of food and medicine, among others, owing to its unique chemical structure and health benefits. However, the phospholipase D (PLD)-mediated enzymatic production of PS remains a challenge due to the low transphosphatidylation activity of PLD. Therefore, in the present study, we designed a maltose-binding protein (MBP) tag and a PLD co-expression method to achieve the expression of soluble PLD in Escherichia coli. A "reconstruct substrate pocket" strategy was then proposed based on the catalytic mechanism and molecular dynamics simulation, expanding the substrate pocket and manipulating the coordination of l-Ser within the active site. The best mutant (SrMBPPLDMu6) exhibited a 2.04-fold higher transphosphatidylation/hydrolysis ratio than the wild-type Furthermore, under optimal conditions, Mu6 produced 58.6 g/L PS with 77.2% conversion, within 12 h on a 3 L scale, which demonstrates the potential of the proposed method for industrial application.
Collapse
Affiliation(s)
- Na Qi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianmin Liu
- Shandong Huishilai Biotechnology Co., Ltd., Jinan, Shandong 250098, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Yang W, Sun L, Dong P, Chen Y, Zhang H, Huang X, Wu L, Chen L, Jing D, Wu Y. Structure-guided rational design of the Geobacillus thermoglucosidasius feruloyl esterase GthFAE to improve its thermostability. Biochem Biophys Res Commun 2022; 600:117-122. [DOI: 10.1016/j.bbrc.2022.02.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022]
|
14
|
Wu H, Chen Q, Zhang W, Mu W. Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges. Crit Rev Food Sci Nutr 2021; 63:2057-2073. [PMID: 34445912 DOI: 10.1080/10408398.2021.1970508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biocatalysts such as enzymes are environmentally friendly and have substrate specificity, which are preferred in the production of various industrial products. However, the strict reaction conditions in industry including high temperature, organic solvents, strong acids and bases and other harsh environments often destabilize enzymes, and thus substantially compromise their catalytic functions, and greatly restrict their applications in food, pharmaceutical, textile, bio-refining and feed industries. Therefore, developing industrial enzymes with high thermostability becomes very important in industry as thermozymes have more advantages under high temperature. Discovering new thermostable enzymes using genome sequencing, metagenomics and sample isolation from extreme environments, or performing molecular modification of the existing enzymes with poor thermostability using emerging protein engineering technology have become an effective means of obtaining thermozymes. Based on the thermozymes as biocatalytic chips in industry, this review systematically analyzes the ways to discover thermostable enzymes from extreme environment, clarifies various interaction forces that will affect thermal stability of enzymes, and proposes different strategies to improve enzymes' thermostability. Furthermore, latest development in the thermal stability modification of industrial enzymes through rational design strategies is comprehensively introduced from structure-activity relationship point of view. Challenges and future research perspectives are put forward as well.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|