1
|
Feng X, Zhu Y, Zhang Y, Hao X, Li S, Jiang C, Su H, Yao Y. The utilization of an ultrasonic mung bean protein-starch conjugate as a fat substitute in whipping cream. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3205-3218. [PMID: 39668389 DOI: 10.1002/jsfa.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Amidst the rising trend of healthy eating, there is a surge in demand for low-fat food options. Within the realm of fat substitutes, modified proteins have shown the most effective ability to replace fat due to their nutritional attributes and functional properties. This study focused on the development of a fat substitute for low-fat whipping cream using the conjugate of ultrasonic mung bean protein and mung bean starch. RESULTS Our findings revealed that the emulsifying properties and solubility of the conjugates were significantly superior to those of mung bean protein alone (P < 0.05). This enhancement was attributed to a smaller particle size, depolymerization of protein molecules and increased total sulfhydryl content, especially the conjugate formed by 60 min ultrasonic mung bean protein and mung bean starch (UMBP60+MS). Incorporating UMBP60+MS as a fat substitute at a 10% ratio in the formulation of low-fat whipping cream resulted in a product with enhanced apparent viscosity, superior environmental stability, and commendable sensory characteristics. Moreover, the fat digestion rate was significantly reduced by 13.5% with the 10% substitution. This 10% substitution also endowed the whipping cream with the most desirable β'-type crystal morphology and the most stable three-dimensional network structure. An intimate encapsulation of fat globules by the conjugate was observed using cryogenic scanning electron microscopy. CONCLUSION The UMBP60+MS conjugate emerged as an effective fat substitute in whipping cream, providing significant contributions to addressing health concerns in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuewei Feng
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yingying Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | | | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- Heilongjiang Beiwei 47 Green Organic Food Co., Ltd, Qiqihar, China
| | - Shiyu Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Chunyang Jiang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Hang Su
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Yang Yao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| |
Collapse
|
2
|
Yu S, Zhi Z, Wang Y, Chen F, Pang J, Wu C. Investigating the cryoprotective mechanism of phosphorylated nano-chitin in shrimp (Litopenaeus vannamei) during frozen storage. Food Res Int 2025; 203:115794. [PMID: 40022326 DOI: 10.1016/j.foodres.2025.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
This study aims to explore the cryoprotective effects of phosphorylated surface deacetylated chitin nanofibers (PS-ChNFs) on shrimp. Compared to the control- and those treated with surface deacetylated chitin nanofibers (S-ChNFs) or sodium tripolyphosphate (STPP), the PS-ChNFs-treated group showed lower thawing losses and cooking losses, alongside higher myofibrillar protein concentrations and Ca2+-ATPase activity in frozen shrimp. Additional, PS-ChNFs-treated significantly delayed protein aggregation and the deterioration of the secondary structure in shrimp during frozen storage (p < 0.05). Furthermore, microscopy analysis revealed PS-ChNFs effectively inhibited ice crystal growth and slowed the damage to muscle tissue structures. Molecular simulations suggested that the cryoprotective effect of PS-ChNFs were primarily achieved through the "water substitution" and "glassy state" hypotheses, wherein PS-ChNFs formed hydrogen bonds with water and reduced the number of water molecules around myosin. These findings indicate that PS-ChNFs hold significant potential as cryoprotectants for freeze-stored aquatic products.
Collapse
Affiliation(s)
- Shan Yu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Zijian Zhi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yufei Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fujie Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
3
|
Jia J, Zhang X, Jia X, Duan J, Wu Z, Deng X, Ge J. Lactic acid fermentation improves rehydration and emulsifying properties of spray-dried egg yolk powder. Food Chem 2025; 463:141352. [PMID: 39316903 DOI: 10.1016/j.foodchem.2024.141352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
In this study, we investigated the protein structures, powder characteristics, as well as rehydration and emulsifying properties of spray-dried egg yolk powder after short-time lactic acid fermentation (3.5 h). Results indicate that fermentation improved the rehydration and emulsifying properties of yolk powder. Limosilactobacillus reuteri-fermented yolk powder exhibited better wettability due to the porous structure of particles and higher hydrophilicity. Lacticaseibacillus rhamnosus-fermented yolk powder had an enhanced coefficient of stability due to its smaller particles and higher surface charge. The higher water solubility of fermented yolk powder samples is mainly attributed to their lower hydrophobicity and higher zeta potential. The enhanced emulsifying activity of fermented yolk powder samples is primarily related to their increased β-turn structure and better solubility. Furthermore, fermentation treatment altered powder moisture content and bulk densities, while not affecting its flow behavior and thermal stability. This study provides an effective approach to improving the quality of yolk powder.
Collapse
Affiliation(s)
- Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xixi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xin Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Jiayi Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Ziyan Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Junlin Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
4
|
Li H, Liu Y, Tan H, Wu X, Wu W. Effect of ultrasonic pretreatment on the emulsion rheological properties and interface protein structure of epigallocatechin-3-gallate and rice bran protein complex. Food Chem 2025; 463:141406. [PMID: 39332355 DOI: 10.1016/j.foodchem.2024.141406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The effect of ultrasonic pretreatment on the emulsion rheological properties and the structural characteristics of interface-adsorbed protein (IAP) and interface-unabsorbed protein (IUP) of rice bran protein and epigallocatechin-3-gallate complex (RBP-EGCG) were studied. Compared to RBP-EGCG without ultrasonic pretreatment, appropriate ultrasonic pretreatment (ultrasonic power was 425 W) enhanced the IAP trypsin sensitivity (from 3.20 to 3.73), increased the IUP surface hydrophobicity (from 12.59 to 20.87), and decreased the ζ-potential (from -24.93 mV to -36.88 mV) and particle size (from 567.30 nm to 273.13 nm) of IUP, thereby increasing the viscosity and viscoelasticity of emulsion. Compared to appropriate ultrasonic pretreatment, high-power ultrasonic pretreatment (ultrasonic power was 500 W) attenuated the IAP trypsin sensitivity, and increased the ζ-potential and particle size of IUP, thereby decreasing the viscosity and viscoelasticity of emulsion. Overall, ultrasonic pretreatment changed the EGCG-RBP emulsion viscoelasticity by regulating spatial structural characteristics and flexibility of interface protein.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yu Liu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Haitong Tan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
5
|
Mao R, Xiong G, Zheng H, Qi J, Zhang C. Effect of ultrasound on the functional properties and structural changes of chicken liver insoluble proteins isolated by isoelectric solubilization/precipitation. ULTRASONICS SONOCHEMISTRY 2025; 112:107165. [PMID: 39612756 PMCID: PMC11634992 DOI: 10.1016/j.ultsonch.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The studies investigated the effects of different ultrasonic powers (180, 360 and 540 W) on the functional properties and structural changes of chicken liver insoluble proteins (CLIPs) isolated by isoelectric solubilization/precipitation (ISP) (with alkaline solubilization at pH 11.0 and pH 12.0 respectively, and acid precipitation at pH 5.5). Results indicated that ultrasonic significantly increased the solubility of ISP-isolated CLIPs, and narrowed the particle size distribution of D3,2 and D4,3 (P < 0.05). The highest solubility was observed at pH 11.0 and 360 W ultrasound treatment, reaching 77.26 %. The ultrasonic with 360 W exhibited higher shear stress and apparent viscosity. Spectroscopy revealed that compared to without ultrasonic treatment, there was an increase in β-sheet and random curling content accompanied by a decrease in β-turn and α-helix structure when ultrasonication. Ultrasound altered the tyrosine hydrophobic residues to be exposed to the surface of the ISP-isolated CLIPs, thus improving the hydrophilicity. Overall, ultrasound combined with ISP treatment effectively improved the functional properties of CLIPs, and it might be a potential, safe and efficient method for improving the processing properties and broadening the application of insoluble animal-derived proteins.
Collapse
Affiliation(s)
- Rongrong Mao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guoyuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China.
| | - Haibo Zheng
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Zou Y, Wang L, Wang X, Lan Y, Ma J, Yang J, Xu W, Shen Q, Wang D. Effect of ultrasound combined with plasma protein treatment on the structure, physicochemical and rheological properties of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2025; 112:107151. [PMID: 39616718 PMCID: PMC11650323 DOI: 10.1016/j.ultsonch.2024.107151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/13/2025]
Abstract
This study aimed to investigate the effect of ultrasound combined with plasma protein (UPP) treatment on the structure, physicochemical and rheological properties of myofibrillar protein (MP). The results indicated that the UPP group caused changes in the secondary structure, increased fluorescence intensity and enhanced surface hydrophobicity of MP. Then, UPP significantly decreased the content of free and total sulfhydryl group, and high molecular weight protein contents were observed in MP. These findings implied moderate cross-linking and aggregation between plasma protein and MP in this ultrasound treatment. Furthermore, the physical characteristics, stability and rheological properties of MP were improved in UPP, as evidenced by increased storage modulus and decreased loss angle tangent. Therefore, this study suggested that the combined treatment not only had the potential to enhance the product quality in the process of ground meat, but also improved the utilization rate and added value of plasma proteins.
Collapse
Affiliation(s)
- Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Lingjuan Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yibo Lan
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingjing Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Qi Shen
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
7
|
Ali S, Jin H, Yang Y, Zhang Y, Wang Y, Li E, Fan X, Song Y, Sun Y, Cai Z, Sheng L. Role of ultrasound and pectin in regulating the foaming properties and baking applications of liquid egg white. Int J Biol Macromol 2025; 286:138392. [PMID: 39653220 DOI: 10.1016/j.ijbiomac.2024.138392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
The capacity of liquid egg white (LEW) to generate foam has become crucial in food processing. This study investigated the impact of ultrasound (US) and pectin in regulating the foaming properties and baking applications of LEW. Results showed that US treatment combined with pectin significantly (P < 0.05) improved foam ability (FA) from 142 ± 3.464 % to 236 ± 2.65 % and foam stability (FS) from 33.32 ± 2.63 % to 60.4 ± 1.82 %. The lowest surface tension achieved was 44.691 mN/m for EW600 + 1 % P. High-intensity US and pectin also enhanced the ξ-potential, solubility, and surface hydrophobicity. Dynamic rheological analysis indicated increased in apparent viscosity and viscoelasticity. Furthermore, increasing US power led to significant turbidity enhancements, rising from 41.22 ± 0.093 % to 96.30 ± 0.026 % (P < 0.05). Importantly, angel cakes made from US-treated LEW with pectin showed a higher specific volume, with EW600 + 1 % P reaching 3.2297 ± 0.017 mL/g compared to 2.9258 ± 0.022 mL/g for the control (P < 0.05). These findings suggest that US and pectin enhance foaming rates and baking performance, addressing reduced FS in egg whites (EW) and angel cakes when different US treatments were applied alone.
Collapse
Affiliation(s)
- Sadaqat Ali
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaqin Yang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Erjiao Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Fan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanbin Song
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxin Sun
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
8
|
Xu W, Bao Y, Gou H, Xu B, Hong H, Gao R. Mitigation of mechanical damage and protein deterioration in giant river prawn (Macrobrachium rosenbergii) by multi-frequency ultrasound-assisted immersion freezing. Food Chem 2024; 458:140324. [PMID: 38970954 DOI: 10.1016/j.foodchem.2024.140324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In order to investigate the effects of multi-frequency ultrasound-assisted immersion freezing (MUIF) on the meat quality of Macrobrachium rosenbergii, tail meat was subjected to different MUIF treatments respectively, namely 20 + 40 kHz (MUIF-20 + 40), 20 + 60 kHz (MUIF-20 + 60), 40 + 60 kHz (MUIF-40 + 60) and 20 + 40 + 60 kHz (MUIF-20 + 40 + 60), and the immersion freezing (IF) as control. Results showed that average diameter of ice crystals was 28 μm in IF, and that was only 8 μm in MUIF-20 + 40 + 60. When compared to IF, MUIF alleviated oxidative deterioration of lipids and proteins, but only at higher ultrasound frequency (MUIF-40 + 60; MUIF-20 + 40 + 60). Carbonyl content of MUIF-20 + 40 + 60 was only 40% of that in IF. Similarly, protein denaturation was inhibited in MUIF (except for MUIF-20 + 40). Transmission electron microscopy showed greater distortion of the ultrastructural components in IF, MUIF-40 + 60, and MUIF-20 + 40 + 60, suggested by bended Z-line. In conclusion, MUIF can be an effective strategy to mitigate mechanical damage and protein deterioration in the meat of Macrobrachium rosenbergii.
Collapse
Affiliation(s)
- Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| | - Hao Gou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
9
|
Shen H, Qi W, Shu Y, Meng Y, Zhao K, Wang J, Wang H, Zhang Z, Li T. Fabrication and characterization of edible Pickering emulsion stabilized by donkey myofibrillar protein. Int J Biol Macromol 2024; 280:135627. [PMID: 39306172 DOI: 10.1016/j.ijbiomac.2024.135627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
This study aims to investigate the properties of edible Pickering emulsions (PEs) stabilized by donkey myofibrillar protein (DMP). The DMP was characterized by an atomic force microscope and interfacial tensiometer. The PEs stabilized by DMP were characterized by a confocal laser scanning microscope, rheometer, and lumisizer stability analyzer. The results showed that the DMP particles were spherical nanoparticles with an average size of 143.97 nm. The DMP could reduce the oil-water interfacial tension very well. The emulsifying activity index was below 14.06 m2/g, and the emulsion stability index was up to 93.76% when the DMP concentration was above 10 mg/mL. Increasing the concentration of DMP (5 mg/mL to 25 mg/mL) could decrease the emulsion droplet sizes and fluidity of the PEs and increase the viscoelasticity of the PEs. The increase in the oil-water ratio (1:9 to 5:5) resulted in a larger average emulsion droplet size, reduced fluidity, and enhanced viscoelasticity. The increase in DMP concentration (from 5 mg/mL to 25 mg/mL) and oil-water ratio (from 1:9 to 4:6) improved the physical stability of the PEs. These results may expand the application of DMP and provide new insight into developing edible PEs suitable for the formulation of functional foods.
Collapse
Affiliation(s)
- Hui Shen
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Wenhui Qi
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China.
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Yaping Meng
- Zhengzhou University of Science and Technology. No.1 Xueyuan Road, Zhengzhou, Henan 450064, People's Republic of China
| | - Kaixuan Zhao
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Jing Wang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Han Wang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, People's Republic of China.
| | - Teng Li
- School of Food Science and Biotechnology, 18 Xuezheng Street, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
10
|
Hu Z, Wei X, Liu X, Bai W, Zeng X. Effect of starch categories and mass ratio of TA/starch on the emulsifying performance and stability of emulsions stabilized by tannic acid-starch complexes. Int J Biol Macromol 2024; 280:136345. [PMID: 39374717 DOI: 10.1016/j.ijbiomac.2024.136345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
This study compounded natural corn starch (CS), mung bean starch (MBS) and potato starch (PS) with tannic acid (TA) to stabilize O/W Pickering emulsion. The effect of TA/starch mass ratio (0-0.25) and three starch categories on particle properties, emulsifying properties, lipid oxidation, freeze-thaw stability, emulsion powder and digestive properties were comprehensibly investigated. In detail, the TA/starch complexes size increased gradually (91.14 nm-200.87 nm) and the hydrophobicity first increased and then decreased (TA/CS > TA/MBS > TA/PS) with increasing TA/starch mass ratio. In addition, the emulsifying ability of TA/starch complexes also increased first and then decreased with increasing mass ratio, especially TA/CS system was the best, which was the same as the hydrophobicity conclusion (θow = 80.46°). Moreover, four starch-based emulsion application characteristics were further evaluated to reveal interface structure. Compared to CS and PS system, TA/MBS emulsion had stronger ability to resist the oil oxidation (TBA = 2.54 μg/mL), destruction of ice crystal (whiter emulsion powder) and digestive enzymes (FFAs = 75.33 %). It mainly attributed to the crosslinking network structure and the highest surface load of TA/MBS complexes. This study would provide new ideas for the design and application of emulsifying properties and emulsion stability.
Collapse
Affiliation(s)
- Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China.
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
11
|
Ni X, Chen C, Li R, Liu Q, Duan C, Wang X, Xu M. Effects of ultrasonic treatment on the structure and functional characteristics of myofibrillar proteins from black soldier fly. Int J Biol Macromol 2024; 278:135057. [PMID: 39187097 DOI: 10.1016/j.ijbiomac.2024.135057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In the process of utilizing black soldier fly larvae (BSFL) lipids to develop biodiesel, many by-products will be produced, especially the underutilized protein components. These proteins can be recycled through appropriate treatment and technology, such as the preparation of feed, biofertilizers or other kinds of bio-products, so as to achieve the efficient use of resources and reduce the generation of waste. Myofibrillar protein (MP), as the most important component of protein, is highly susceptible to environmental influences, leading to oxidation and deterioration, which ultimately affects the overall performance of the protein and product quality. For it to be high-quality and fully exploited, in this study, black soldier fly myofibrillar protein (BMP) was extracted and primarily subjected to ultrasonic treatment to investigate the impact of varying ultrasonic powers (300, 500, 700, 900 W) on the structure and functional properties of BMP. The results indicated that as ultrasonic power increased, the sulfhydryl content and turbidity of BMP decreased, leading to a notable improvement in the stability of the protein emulsion system. SEM images corroborated the changes in the microstructure of BMP. Moreover, the enhancement of ultrasound power induced modifications in the intrinsic fluorescence spectra and FTIR spectra of BMP. Additionally, ultrasonic treatment resulted in an increase in carbonyl content and emulsifying activity of BMP, with both peaking at 500 W. It was noteworthy that BMP treated with ultrasound exhibited stronger digestibility compared to the untreated. In summary, 500 W was determined as the optimal ultrasound parameter for this study. Overall, ultrasound modification of insect MPs emerges as a dependable technique capable of altering the structure and functionality of BMP.
Collapse
Affiliation(s)
- Xiangxiang Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chengcheng Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruixi Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiwei Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chaoyi Duan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiu Wang
- School of Advanced Materials & Engineering, Jiaxing Nanhu University, Jiaxing 314001, China.
| | - Mingfeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
12
|
Gao Q, Yang YQ, Nie HN, Wang BQ, Peng X, Wang N, Li JK, Rao JJ, Xue YL. Investigating the impact of ultrasound on the structural, physicochemical, and emulsifying characteristics of Dioscorin: Insights from experimental data and molecular dynamics simulation. Food Chem 2024; 453:139581. [PMID: 38754354 DOI: 10.1016/j.foodchem.2024.139581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
This study investigated the impact of ultrasound treatment on dioscorin, the primary storage protein found in yam tubers. Three key factors, namely ultrasound power, duration, and frequency, were focused on. The research revealed that ultrasound-induced cavitation effects disrupted non-covalent bonds, resulting in a reduction in α-helix and β-sheet contents, decreased thermal stability, and a decrease in the apparent hydrodynamic diameter (Dh) of dioscorin. Additionally, previously hidden amino acid groups within the molecule became exposed on its surface, resulting in increased surface hydrophobicity (Ho) and zeta-potential. Under specific ultrasound conditions (200 W, 25 kHz, 30 min), Dh decreased while Ho increased, facilitating the adsorption of dioscorin molecules onto the oil-water interface. Molecular dynamics (MD) simulations showed that at lower frequencies and pressures, the structural flexibility of dioscorin's main chain atoms increased, leading to more significant fluctuations between amino acid residues. This transformation improved dioscorin's emulsifying properties and its oil-water interface affinity.
Collapse
Affiliation(s)
- Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Yu-Qi Yang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Hao-Nan Nie
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Bing-Qing Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Jiang-Kuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China
| | - Jia-Jia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
13
|
Wang X, Ni X, Duan C, Li R, Jiang X, Xu M, Yu R. The Effect of Ultrasound Treatment on the Structural and Functional Properties of Tenebrio molitor Myofibrillar Protein. Foods 2024; 13:2817. [PMID: 39272582 PMCID: PMC11395043 DOI: 10.3390/foods13172817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The objective of this study was to explore the impacts of various ultrasonic powers (0, 300, 500, 700, and 900 W) on the structure and functional attributes of the myofibrillar protein (MP) of Tenebrio molitor. As the ultrasonic intensity escalated, the extraction efficiency and yield of the MP rose, while the particle size and turbidity decreased correspondingly. The reduction in sulfhydryl group content and the increase in carbonyl group content both suggested that ultrasonic treatment promoted the oxidation of the MP to a certain extent, which was conducive to the formation of a denser and more stable gel network structure. This was also affirmed by SEM images. Additionally, the findings of intrinsic fluorescence and FTIR indicated that high-intensity ultrasound significantly altered the secondary structure of the protein. The unfolding of the MP exposed more amino acid residues, the α-helix decreased, and the β-helix improved, thereby resulting in a looser and more flexible conformation. Along with the structural alteration, the surface hydrophobicity and emulsification properties were also significantly enhanced. Besides that, SDS-PAGE demonstrated that the MP of T. molitor was primarily composed of myosin heavy chain (MHC), actin, myosin light chain (MLC), paramyosin, and tropomyosin. The aforementioned results confirmed that ultrasonic treatment could, to a certain extent, enhance the structure and function of mealworm MP, thereby providing a theoretical reference for the utilization of edible insect proteins in the future, deep-processing proteins produced by T. molitor, and the development of new technologies.
Collapse
Affiliation(s)
- Xiu Wang
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Xiangxiang Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chaoyi Duan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruixi Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao'e Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingfeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rongrong Yu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
14
|
Cheng T, Zhang G, Sun F, Guo Y, Ramakrishna R, Zhou L, Guo Z, Wang Z. Study on stabilized mechanism of high internal phase Pickering emulsions based on commercial yeast proteins: Modulating the characteristics of Pickering particle via sonication. ULTRASONICS SONOCHEMISTRY 2024; 104:106843. [PMID: 38471387 PMCID: PMC10944291 DOI: 10.1016/j.ultsonch.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.
Collapse
Affiliation(s)
- Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guofang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | | | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Grain Industry Technology Innovation Center, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Zhao S, Zhao Y, Liu H, Chen Q, Sun H, Kong B. Combined effects of high-intensity ultrasound treatment and hydrogen peroxide addition on the thermal stabilities of myofibrillar protein emulsions at low ionic strengths. ULTRASONICS SONOCHEMISTRY 2024; 104:106841. [PMID: 38442572 PMCID: PMC10924124 DOI: 10.1016/j.ultsonch.2024.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
In this study, the effects of high-intensity ultrasound (HIU) treatment combined with hydrogen peroxide (H2O2) addition on the thermal stability of myofibrillar protein (MP)-stabilized emulsions in low-salt conditions were investigated. Results showed that compared to using either HIU or H2O2 treatment alone, HIU treatment combined with H2O2 was most effective in enhancing the physical stability of emulsions. Moreover, the emulsion stabilized by MPs co-treated with HIU and H2O2 exhibited the most uniform distribution, highest absolute zeta potential, and optimal rheological properties upon heating. This combination effect during heating was caused by the inhibition of disulfide bond cross-linking of myosin heads by H2O2 and the dissociation of filamentous myosin structures using the HIU treatment. In addition, the results of oxidative stability analysis indicated that the addition of H2O2 increased the content of oxidation products; however, the overall influence on the oxidative stability of emulsions was not significant. In conclusion, the combination of HIU and H2O2 treatment is a promising approach to suppress heat-induced MP aggregation and improve the thermal stability of corresponding emulsions.
Collapse
Affiliation(s)
- Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yubo Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongbo Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
16
|
Liao G, Kang J, Zhang H, Cui Y, Xiong S, Liu Y. Covalent and non-covalent interaction of myofibrillar protein and cyanidin-3-O-glucoside: focus on structure, binding sites and in vitro digestion properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:905-915. [PMID: 37699084 DOI: 10.1002/jsfa.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effects of covalent and non-covalent interactions between myofibrillar protein (MP) and cyanidin-3-O-glucoside (C3G) on protein structure, binding sites, and digestion properties. Four methods of inducing covalent cross-linking were used in the preparation of MP-C3G conjugates, including tyrosinase-catalyzed oxidation, alkaline pH shift treatment, free radical grafting, and ultrasonic treatment. A comparison was made between MP-C3G conjugates and complexes, and the analysis included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), C3G binding ratio, liquid chromatography-tandem mass spectrometry (LC-MS/MS), protein side-chain amino acids, circular dichroism spectroscopy, three-dimensional fluorescence, particle size, and in vitro simulated digestion. RESULTS Covalent bonding between C3G and amino acid side chains in MP was confirmed by LC-MS/MS. In covalent bonding, tryptophan residues, free amino groups and sulfhydryl groups were all implicated. Among the 22 peptides covalently modified by C3G, 30 modification sites were identified, located in lysine, histidine, tryptophan, arginine and cysteine. In vitro simulated digestion experiments showed that the addition of C3G significantly reduced the digestibility of MP, with the covalent conjugate showing lower digestibility than the non-covalent conjugate. Moreover, the digestibility of protein decreased more during intestinal digestion, possibly because covalent cross-linking of C3G and MP further inhibited trypsin targeting sites (lysine and arginine). CONCLUSION Covalent cross-linking of C3G with myofibrillar proteins significantly affected protein structure and reduced protein digestibility by occupying more trypsin binding sites. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangming Liao
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Jiajia Kang
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Haiping Zhang
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Ying Cui
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Youming Liu
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Zhu YA, Sun P, Duan C, Cao Y, Kong B, Wang H, Chen Q. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res Int 2023; 174:113634. [PMID: 37986538 DOI: 10.1016/j.foodres.2023.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
This study aims to enhance the stability and bioavailability of curcumin (Cur) using nanoemulsion coating technology. The nanoemulsion system was developed by encapsulating Cur with quaternized chitosan (QMNE), and the nanoemulsion containing Cur and medium-chain triglyceride (MCT) oil (MNE) was used as control sample. The microstructure of the nanoemulsion was examined using Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The storage, thermal, ionic strength, and pH stability of QMNE were also evaluated, respectively. The results indicate that QMNE demonstrates superior stability, in vitro gastric fluid stability, bioavailability compared to MNE. QMNE exhibits excellent emulsification activity and stability. In addition, QMNE shows significant protection against oxidation in both emulsion systems after different heat treatments. The antimicrobial activity results reveal that QMNE exhibits greater efficacy than that of MNE. Consequently, this study provides valuable insights into the formulation of a system to encapsulate Cur and the improvement of its stability and bioavailability.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengyu Duan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
18
|
Gao Y, Hu Y, Wang J, Ahmad HN, Zhu J. Modification of low-salt myofibrillar protein using combined ultrasound pre-treatment and konjac glucomannan for improving gelling properties: Intermolecular interaction and filling effect. Int J Biol Macromol 2023; 250:126195. [PMID: 37558028 DOI: 10.1016/j.ijbiomac.2023.126195] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The quality deterioration of low-salt meat products has been gained ongoing focus of researchers. In this study, konjac glucomannan (KGM) was used to alleviate the finiteness of ultrasound treatment on the quality improvement of low-salt myofibrillar protein (MP), and the modification sequence was also investigated. The results revealed that the single and double sequential modification by utilizing KGM and ultrasound significantly influenced the gelation behavior of low-salt MPs. The uniform MP-KGM mixture formed by a single ultrasound treatment had limited protein unfolding, resulting in relatively weak intermolecular forces in the composite gel. Importantly, ultrasound pre-treatment combined with KGM modification promoted the unfolding and moderate thermal aggregation of proteins and remarkably improved the rheological behaviors and gel strength of the composite gel. This result could also be corroborated by the highest percentage of trans-gauche-trans conformation of SS bridges and maximum β-sheet proportion. Furthermore, molecular dynamic simulation and molecular docking elucidated that the hydrogen bond length between protein and KGM was shortened after ultrasound pre-treatment, which was the molecular basis for the enhanced intermolecular interactions. Therefore, ultrasound pre-treatment combined with KGM can effectively improve the gelling properties of low-salt MPs, providing a practical method for the processing of low-salt meat products.
Collapse
Affiliation(s)
- Yongfang Gao
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China
| | - Yunpeng Hu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiakuan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
19
|
Zhang Z, Shi W, Wang Y, Meng X, Dabbour M, Kumah Mintah B, Chen X, Chen X, He R, Ma H. Mono-frequency ultrasonic-assisted thawing of frozen goose meat: Influence on thawing efficiency, product quality and microstructure. ULTRASONICS SONOCHEMISTRY 2023; 98:106489. [PMID: 37354765 PMCID: PMC10320251 DOI: 10.1016/j.ultsonch.2023.106489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
This study aimed to investigate the influences of mono-ultrasound assisted thawing on the thawing efficiency, product quality and conformational characteristics of frozen goose meat. The thawing time, thawing loss, muscle quality, and microstructure of frozen goose meat were studied. The results displayed that ultrasonic-assisted thawing effectively reduced the thawing time by 45.37-57.58% compared with non-sonicated group, and significantly decreased the thawing loss. For the quality properties of goose meat tissue, ultrasound-assisted thawing with single-frequency of 50 kHz indicated a lower protein turbidity; meanwhile, hardness values were also significantly increased, and displayed a higher springiness, gumminess and chewiness of goose meat tissue. The microstructure analysis exhibited that the conformation of goose myofibrillar protein (MP) was modified following ultrasonic-assisted thawing, and became closer and more irregular. Therefore, ultrasound-assisted thawing treatments at 50 kHz mono-frequency (temperature 25℃) have a high potential application value in the thawing research of frozen goose meat, and lay a theoretical foundation for use in the meat process industries.
Collapse
Affiliation(s)
- Zhaoli Zhang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wangbin Shi
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yang Wang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xiangren Meng
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Xingyu Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xi Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
20
|
Li X, Luo T, Wang L, Song H, Wang F, Weng Z, Zhou J, Xiang X, Xiong L, Shen X. Emulsifying properties of wheat germ protein: Effect of different ultrasonic treatment. ULTRASONICS SONOCHEMISTRY 2023; 98:106479. [PMID: 37336077 PMCID: PMC10300257 DOI: 10.1016/j.ultsonch.2023.106479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The effect of ultrasonic treatment on emulsifying properties of wheat germ protein (WGP) was studied in this paper. WGP was subjected to low frequency (20 kHz), high intensity ultrasonic treatment at different power (200, 400, 600, 800 W) for 10 min, or different time (2, 4, 6, 8, 10, 15, 20 min) at 400 W. The emulsifying activity index and emulsion stability index of WGP were significantly improved, and the emulsion droplet was smaller and more uniform after ultrasound treatment. Ultrasound increased the adsorbed WGP concentration at the oil-water interface and reduced the interfacial tension, which explained the improved emulsifying properties of WGP. The investigation on molecular properties and protein conformation showed that ultrasound processing increased solubility, but decreased particle size and surface charge of WGP. Ultrasound processing resulted in the unfolding of the protein molecular structure indicated by the increase of surface hydrophobicity and surface free sulfhydryl group levels, and the decrease of intrinsic fluorescence intensity. Correlation analysis showed that the changes in WGP solubility, particle size, and surface hydrophobicity were the main driven factors for the improved emulsifying properties of WGP.
Collapse
Affiliation(s)
- Xiaotian Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Tao Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zebin Weng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Jianxin Zhou
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | | | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
21
|
Zhang S, Xu Z, Zheng W, Pan Q, Zhu Y. Effect of multi-mode sweep frequency ultrasound pretreatment on properties of the zeins and ACE inhibitory peptides activity of the hydrolysates. Food Chem 2023; 407:135126. [PMID: 36493471 DOI: 10.1016/j.foodchem.2022.135126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Effects of sweep frequency ultrasound (SFU) pretreatment of a new multifunctional ultrasonic equipment on hydrolysis characteristics of zeins and angiotensin-converting enzyme (ACE) inhibitory activity of zein hydrolysates were investigated. Degree of hydrolysis of zeins reached the highest of 25.93 % and 25.72 % at 40 kHz and 25/40 kHz, respectively. While 25/40 kHz increased solubility, surface hydrophobicity, particle size uniform of zeins and ACE inhibitory activities of the hydrolysates significantly. Endogenous fluorescence indicated that 25/40 kHz promoted unfolding of protein molecules and exposure of hydrophobic residues, thereby facilitating enzymatic hydrolysis. Circular dichroism spectrum and Fourier transform infrared spectrometer illustrated that 25/40 kHz unfolded protein molecules and decreased α-helical contents remarkably. Gel permeation chromatography showed that more small-molecule active peptides were obtained from hydrolysates at 25/40 kHz. In conclusion, SFU pretreatment at 25/40 kHz with the new equipment before proteolysis is an efficient method to improve ACE inhibitory activity of the hydrolysates.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhiqiang Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Wenbin Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qiang Pan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
22
|
Xie H, Wei X, Liu X, Bai W, Zeng X. Effect of polyphenolic structure and mass ratio on the emulsifying performance and stability of emulsions stabilized by polyphenol-corn amylose complexes. ULTRASONICS SONOCHEMISTRY 2023; 95:106367. [PMID: 36933501 PMCID: PMC10034494 DOI: 10.1016/j.ultsonch.2023.106367] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
O/W emulsions stabilized by polyphenol/amylose (AM) complexes with several polyphenol/AM mass ratios and different polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) were prepared by a high-intensity ultrasound emulsification technique. The effect of the pyrogallol group number of polyphenols and the mass ratio of polyphenols/AM on polyphenol/AM complexes and emulsions was studied. The soluble and/or insoluble complexes gradually formed upon adding polyphenols into the AM system. However, insoluble complexes were not formed in the GA/AM systems because GA has only one pyrogallol group. In addition, the hydrophobicity of AM could also be improved by forming polyphenol/AM complexes. The emulsion size decreased with increasing pyrogallol group number on the polyphenol molecules at a fixed ratio, and the size could also be controlled by the polyphenol/AM ratio. Moreover, all emulsions presented various degrees of creaming, which was restrained by decreasing emulsion size or the formation of a thick complex network. The complex network was enhanced by increasing the ratio or pyrogallol group number on the polyphenol molecules, which was because the increasing number of complexes was adsorbed onto the interface. Altogether, compared to GA/AM and EGCG/AM, the TA/AM complex emulsifier had the best hydrophobicity and emulsifying properties, and the TA/AM emulsion had the best emulsion stability.
Collapse
Affiliation(s)
- Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China.
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
23
|
Chen J, Zeng X, Chai J, Zhou G, Xu X. Improvement of the emulsifying properties of mixed emulsifiers by optimizing ultrasonic-assisted processing. ULTRASONICS SONOCHEMISTRY 2023; 95:106397. [PMID: 37044021 PMCID: PMC10119801 DOI: 10.1016/j.ultsonch.2023.106397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Optimizing ultrasound (ULD)-assisted flavonoid modification is an important component of enhancing its application potential. In this work, diverse flavonoids, such as quercetin (Que), apigenin (Api), and morin (Mor), were used to modify protein in myofibrillar protein (MP)/cellulose nanocrystal (CN) complexes using ULD-assisted method. Compared with the MP/CNs group, the triiodide contents of MP-Que/CNs, MP-Api/CNs, and MP-Mor/CNs increased by 1175.84%, 479.05%, and 2281.50% respectively. The findings revealed that the actual intensity of ULD was drastically reduced by the molecular weight decrease of these flavonoids. For olive oil emulsions prepared with mixed emulsifiers, the low interfacial diffusion rates (0.03 mN·m·s-1/2) and weak emulsifying activity (8.33 m2/g) of the MP/CN complexes were significantly improved by the flavonoids after ULD-assisted treatment. Notably, the emulsions prepared using MP-Api/CNs contained smaller oil droplets and exhibited better emulsifying properties, compared to emulsions prepared with MP-Mor/CNs or MP-Que/CNs. This study is essential for ULD-assisted treatment since the processing impact may be increased by choosing the most suitable flavonoid.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chai
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Zhou L, Zhang R, Zhang J, Yin Y, Wei L, Xing L, Zhang W. Effects of ultrasound on the oxidation and structures of the myofibrillar protein in the presence or absence of soybean oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37186089 DOI: 10.1002/jsfa.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ultrasound is widely used as a novel non-thermal processing technique to improve protein properties. In recent decades, applying ultrasound-assisted emulsification (UAE) to produce protein-stabilized emulsion has attracted people's attention. Instead of applying ultrasound to treat a single protein solution, UAE treatment refers to the use of sonication to a mixture of protein and oil. The purpose of this study was to compare the different effects of ultrasound treatment on the properties of the myofibrillar protein (MP) in the presence or absence of soybean oil. A suitable sonication power was selected based on the change in emulsion properties. RESULTS The 300W sonication power was selected due to its most effectively decreased emulsion droplet size and increased absolute zeta potential. Sonication more significantly increased the protein carbonyl content and disulfide bonds of the MP-soybean oil sample than MP sample. Due to the existence of oil, ultrasound could unfold more protein molecules illustrated by a lower α-helix content and intrinsic fluorescence intensity, and a higher surface hydrophobicity. LC-MS/MS results illustrated that sonication enhanced the myosin heavy chain and actin content at the soybean oil interface as well as accelerated the myosin light chain to separate from myosin in the MP-soybean oil system. CONCLUSION In summary, ultrasound treatment could lead to a higher level of protein oxidation and more protein molecule exposure in the MP with the presence of oil system than in the oil-free MP system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruyu Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yantao Yin
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lanlan Wei
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Yavuz UB, Erem E, Kilic-Akyilmaz M. Stabilization of Olive Oil in Water Emulsion with Dairy Ingredients by Pulsed and Continuous High Intensity Ultrasound. ACS OMEGA 2023; 8:11425-11432. [PMID: 37008147 PMCID: PMC10061600 DOI: 10.1021/acsomega.3c00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Application of high intensity ultrasound (HIUS) for stabilization of olive oil in water emulsion with different dairy ingredients including sodium caseinate (NaCS) and whey protein isolate (WPI) was investigated. The emulsions were prepared by homogenization with a probe and then treated with either a second homogenization or HIUS at a different power level (20 and 50%) in pulsed or continuous mode for 2 min. The emulsion activity index (EAI), creaming index (CI), specific surface area (SSA), rheological properties, and droplet size of the samples were determined. The temperature of the sample rose when HIUS was applied in continuous mode and at increasing power level. HIUS treatment increased EAI and SSA of the emulsion and decreased droplet size and CI compared with those of the double-homogenized sample. Among the HIUS treatments, the highest EAI was found in the emulsion with NaCS that was treated at a power level of 50% in continuous mode, and the lowest one was obtained by HIUS applied at a power level of 20% in pulsed mode. SSA, droplet size, and span of the emulsion were not affected by HIUS parameters. Rheological properties of HIUS-treated emulsions were not different from those of the double-homogenized control sample. Continuous HIUS at 20% power level and pulsed HIUS at 50% power level reduced creaming in the emulsion after storage at a similar level. HIUS at a low power level or in pulsed mode can be preferred for heat sensitive materials.
Collapse
Affiliation(s)
- Ummu Busra Yavuz
- Department
of Food Engineering, Istanbul Technical
University, 34469 Istanbul, Türkiye
| | - Erenay Erem
- Department
of Food Engineering, Istanbul Technical
University, 34469 Istanbul, Türkiye
| | - Meral Kilic-Akyilmaz
- Department
of Food Engineering, Istanbul Technical
University, 34469 Istanbul, Türkiye
| |
Collapse
|
26
|
Zhang M, Zhu S, Li Q, Xue D, Jiang S, Han Y, Li C. Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods 2023; 12:foods12061249. [PMID: 36981174 PMCID: PMC10048447 DOI: 10.3390/foods12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heat treatment affects the structural properties of meat proteins, which in turn leads to changes in their sensitivity to digestive enzymes, further affecting the nutritional value of meat and meat products. The mechanism of changes in the structure and digestive properties of myosin under different heating conditions were studied. An increase in heating temperature led to the exposure of internal groups to a polar environment, but to a decrease in the sturdy α-helix structure of myosin (p < 0.05). The results of tryptophan fluorescence verified that the tertiary structure of the protein seemed to be unfolded at 70 °C. Higher protein denaturation after overheating, as proven by the sulfhydryl contents and turbidity, caused irregular aggregate generation. The excessive heating mode of treatment at 100 °C for 30 min caused myosin to exhibit a lower degree of pepsin digestion, which increased the Michaelis constant (Km value) of pepsin during the digestion, but induced the production of new peptides with longer peptide sequences. This study elucidates the effects of cooking temperature on the conformation of myosin and the change in digestibility of pepsin treatment during heating.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Ministry of Education, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuran Zhu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
27
|
Zhang RY, Wang Y, Jiang Y, Min EH, Rao SQ. Effects of dual succinylation and ultrasonication modification on the structural and functional properties of ovalbumin. Food Res Int 2023; 165:112511. [PMID: 36869511 DOI: 10.1016/j.foodres.2023.112511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023]
Abstract
In this study, the functional properties of ovalbumin (OVA) were improved through dual modification with succinylation (succinylation degrees of 32.1 % [S1], 74.2 % [S2], and 95.2 % [S3]) and ultrasonication (ultrasonication durations of 5 min [U1], 15 min [U2], and 25 min [U3]), and the changes in protein structures were explored. Results showed that as the succinylation degree was increased, the particle size and surface hydrophobicity of S-OVA decreased by the maximum values of 2.2 and 2.4 times, respectively, causing emulsibility and emulsifying stability to increase by 2.7 and 7.3 times, respectively. After ultrasonic treatment, the particle size of succinylated-ultrasonicated OVA (SU-OVA) had decreased by 3.0-5.1 times relative to that of S-OVA. Moreover, the net negative charge of S3U3-OVA had increased to the maximum value of - 35.6 mV. These changes contributed to the further enhancement in functional indicators. The unfolding of the protein structure and the conformational flexibility of SU-OVA were illustrated and compared with those of S-OVA via protein electrophoresis, circular dichroism spectroscopy, intrinsic fluorescence spectroscopy, and scanning electron microscopy. The dually modified OVA emulsion (S3U3-E) presented small droplets (243.33 nm), reduced viscosity, and weakened gelation behavior that were indicative of even distribution, which was visually proven by confocal laser scanning microscopy images. Furthermore, S3U3-E exhibited favorable stability, a particle size that was almost unchanged, and a low polydispersity index (<0.1) over 21 days of storage at 4 °C. The above results demonstrated that succinylation combined with ultrasonic treatment could be an effective dual modification method for enhancing the functional performance of OVA.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yang Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yi Jiang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Er-Hu Min
- Jiangsu Vocational College of Tourism, Yangzhou 225127, Jiangsu, China
| | - Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
28
|
Liu Y, Huang M, Liu X, Hu M. Structural characterization and functional properties of egg white protein treated by electron beam irradiation. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Kang X, Guo W, Ding K, Zhan S, Lou Q, Huang T. Microwave processing technology influences the functional and structural properties of fish gelatin. J Texture Stud 2023; 54:127-135. [PMID: 36176227 DOI: 10.1111/jtxs.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the effects of microwave processing technology (MPT, 240-800 W, 1 and 4 min) on the functional and structural properties of fish gelatin (FG). It showed that MPT could increase gel strength and texture properties of FG, especially for 240 W. MPT greatly increased emulsifying activity index (EAI) of FG, but decreased its emulsion stability index (ESI). Rheology results showed that MPT increased viscosity of FG, but decreased gelation times. Intrinsic fluorescence and Fourier transform infrared (FTIR) spectroscopy results indicated that MPT could unfold gelatin, contributing to the formation of H-bonds. Scanning electron microscopy (SEM) analysis revealed that low power and short time of MPT-treated gelatin gels had much more dense and less voids. This work provided guidance for the applications of MPT to improve the functional properties of FG, and the results show that MPT-treated FG can replace mammalian gelatin and meet the religious requirement.
Collapse
Affiliation(s)
- Xinzi Kang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Keying Ding
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
30
|
Hou Y, Ren X, Huang Y, Xie K, Wang K, Wang L, Wei F, Yang F. Effects of hydrodynamic cavitation on physicochemical structure and emulsifying properties of tilapia ( Oreochromis niloticus) myofibrillar protein. Front Nutr 2023; 10:1116100. [PMID: 36761226 PMCID: PMC9905136 DOI: 10.3389/fnut.2023.1116100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The purpose of this research was to explore the different hydrodynamic cavitation (HC) times (0, 5, 10, 15, 20 min; power 550 W, pressure 0.14 MPa) on the emulsifying properties of tilapia myofibrillar protein (TMP). Results of pH, particle size, turbidity, solubility, surface hydrophobicity, and reactive sulfhydryl (SH) group indicated that HC changed the structure of TMP, as confirmed by the findings of intrinsic fluorescence and circular dichroism (CD) spectra. Furthermore, HC increased the emulsifying activity index (EAI) significantly (P < 0.05) and changed the emulsifying stability index (ESI), droplet size, and rheology of TMP emulsions. Notably, compared with control group, the 10-min HC significantly decreased particle size and turbidity but increased solubility (P < 0.05), resulting in accelerated diffusion of TMP in the emulsion. The prepared TMP emulsion showed the highest ESI (from 71.28 ± 5.50 to 91.73 ± 5.56 min), the smallest droplet size (from 2,754 ± 110 to 2,138 ± 182 nm) and the best rheological properties, as demonstrated by the microstructure photographs. Overall, by showing the effect of HC in improving the emulsifying properties of TMP, the study demonstrated HC as a potential technique for meat protein processing.
Collapse
Affiliation(s)
- Yucheng Hou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Xian’e Ren
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China,Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, China
| | - Yongchun Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China,Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, China
| | - Kun Xie
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Keyao Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Liyang Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Fengyan Wei
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Feng Yang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China,Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou, China,*Correspondence: Feng Yang,
| |
Collapse
|
31
|
Qi J, Jia CK, Zhang WW, Yan HM, Cai QY, Yao XN, Xu K, Xu Y, Xu WP, Xiong GY, Li MQ. Ultrasonic-assisted stewing enhances the aroma intensity of chicken broth: A perspective of the aroma-binding behavior of fat. Food Chem 2023; 398:133913. [DOI: 10.1016/j.foodchem.2022.133913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
32
|
Guo L, Xu X, Zhang X, Chen Z, He R, Ma H. Application of simultaneous ultrasonic curing on pork (Longissimus dorsi): Mass transport of NaCl, physical characteristics, and microstructure. ULTRASONICS SONOCHEMISTRY 2023; 92:106267. [PMID: 36543047 PMCID: PMC9793306 DOI: 10.1016/j.ultsonch.2022.106267] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the effect of ultrasound curing with various working modes and frequency combinations, including mono-, dual- and tri-frequency, on the content of NaCl and tenderness of pork loins (Longissimus dorsi). The physical qualities, myoglobin, moisture migration, distribution, and microstructure of pork were also evaluated. The results displayed that the NaCl content of samples cured by simultaneous ultrasound (100 W/L) working mode with a frequency combination of 20, 40, and 60 kHz was higher than that of other ultrasound working modes. The effect of ultrasonic brining was significantly better than the static curing when the saline solution was >35 mL. In addition, the samples cured by simultaneous ultrasound had better physical qualities, including more pickling absorptivity, less cooking loss, and lower hardness, tenderness, and chewiness value. The intensity of lightness was reduced, although redness and yellowness remained unaltered compared to static curing. The myoglobin content decreased drastically without changing the oxygenation level, and the relaxation time of T2b and T21 was delayed. The microstructure indicated that the ultrasonic treatment could promote changes in meat texture. Overall, the simultaneous ultrasound at various frequencies could efficiently accelerate NaCl penetration and improve pork quality.
Collapse
Affiliation(s)
- Lina Guo
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaosen Xu
- Jiangsu University of Science and Technology, Marine Equipment and Technology Institute, No. 2 Mengxi Road, Zhenjiang 212013, China
| | - Xinyan Zhang
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhongyuan Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
33
|
Strategy and Mechanism of Rice Bran Protein Emulsion Stability Based on Rancidity-Induced Protein Oxidation: An Ultrasonic Case Study. Foods 2022; 11:foods11233896. [PMID: 36496706 PMCID: PMC9736135 DOI: 10.3390/foods11233896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To provide a strategy for improving the stability of rice bran protein emulsion (RBPE), rice bran proteins (RBPs) with different oxidation extents were prepared from fresh rice bran (RB) stored for different times (0, 1, 3, 5, 10 d), and RBPE was prepared with ultrasonic treatment. The ultrasonic conditions were optimized according to the results of the RBPE’s stability (when RB stored for 0, 1, 3, 5, 10 d, the optimal ultrasonic treatment conditions of RBPE were 500 w and 50 min, 400 w and 30 min, 400 w and 30 min, 300 w and 20 min, 500 w and 50 min, respectively). Additionally, the structural characteristics and the flexibility of RBPE interface protein were characterized, and the results showed that compared with native protein and excessive oxidized protein, the unfolded structure content and flexibility of interface protein of RBPE prepared by moderate oxidized protein under optimal ultrasonic intensity was higher. Furthermore, the correlation analysis showed that the RBPE stability was significantly correlated with the structural characteristics and flexibility of the RBPE interface protein (p < 0.05). In summary, ultrasonic treatment affected the interface protein’s structural characteristics and flexibility, improving the stability of RBPE prepared from oxidized RBP.
Collapse
|
34
|
Modification of functional properties of mussel actomyosin by ultrasound treatment and the appplication at O/W emulsion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Gu S, Zhu Q, Zhou Y, Wan J, Liu L, Zhou Y, Chen D, Huang Y, Chen L, Zhong X. Effect of Ultrasound Combined with Glycerol-Mediated Low-Sodium Curing on the Quality and Protein Structure of Pork Tenderloin. Foods 2022; 11:3798. [PMID: 36496606 PMCID: PMC9737799 DOI: 10.3390/foods11233798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Considering the hazards of high salt intake and the current status of research on low-sodium meat products, this study was to analyze the effect of ultrasound combined with glycerol-mediated low-sodium salt curing on the quality of pork tenderloin by analyzing the salt content, water activity (aw), cooking loss, and texture. The results of scanning electron microscope (SEM) analysis, Raman spectroscopy, ultraviolet fluorescence, and surface hydrophobicity were proposed to reveal the mechanism of the effect of combined ultrasound and glycerol-mediated low sodium salt curing on the quality characteristics of pork tenderloin. The results showed that the co-mediated curing could reduce salt content, aw, and cooking loss (p < 0.05), improve texture and enhance product quality. Compared with the control group, the co-mediated curing increased the solubility of the myofibrillar protein, improved the surface hydrophobicity of the protein, increased the content of reactive sulfhydryl groups (p < 0.05), and changed the protein structure. The SEM results showed that the products treated using a co-mediated curing process had a more detailed and uniform pore distribution. These findings provide new insights into the quality of ultrasonic-treated and glycerol-mediated low-salt cured meat products.
Collapse
Affiliation(s)
- Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Dan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yanpei Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Li Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Xiaolin Zhong
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| |
Collapse
|
36
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
37
|
Zhang M, Fan L, Liu Y, Li J. Relationship between protein native conformation and ultrasound efficiency: For improving the physicochemical stability of water–in–oil emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Ultrasound: A reliable method for regulating food component interactions in protein-based food matrices. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Yellow horn as an alternative source of plant-based protein: The effects of high-intensity ultrasonication treatment on its physicochemical properties and emulsifying properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Chen J, Gao Q, Zhou G, Xu X. Interactions between the protein-epigallocatechin gallate complex and nanocrystalline cellulose: A systematic study. Food Chem 2022; 387:132791. [DOI: 10.1016/j.foodchem.2022.132791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
|
41
|
Wang P, Li Y, Qu Y, Wang B, Huang M, Sun J, Zhang M, Huang H, Zhang C. Effects of heat treatment on physicochemical and microstructure properties of myofibrillar proteins combined with glucose and cellulose nanofibers. Food Chem 2022; 387:132775. [DOI: 10.1016/j.foodchem.2022.132775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
|
42
|
Comparative study on the in vitro digestibility of chicken protein after different modifications. Food Chem 2022; 385:132652. [PMID: 35278732 DOI: 10.1016/j.foodchem.2022.132652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/09/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
Abstract
The effects of tea polyphenols (TPPs) and ultrasound treatment (UDT) on the digestibility of chicken myofibrillar protein (MPN) in anenhanced oxidation system were investigated. As observed, the original aggregates of MPN were much lower in the UDT-assisted group than in the control protein group, and the difference widened after the incorporation of TPPs. The covalent structures of the UDT-assisted oxidation groups were verified via mass spectrometry and amino acid (AAD) measurements. The peptide abundance increased after the UDT-assisted covalent reaction and most of these peptides were derived from the structural proteins of MPNs according to the results of nano-LC-ESI-MS/MS. Digestion kinetic analysis showed that the digestion level of the EGCG-treated group was better than that of the other treated groups, regardless of the UDT-assisted covalent reaction. Overall, the combination of EGCG oxidation and UDT may be an efficient way to promote the nutritional value of the final MPN products.
Collapse
|
43
|
Liu G, Hu M, Du X, Liao Y, Yan S, Zhang S, Qi B, Li Y. Correlating structure and emulsification of soybean protein isolate: Synergism between low-pH-shifting treatment and ultrasonication improves emulsifying properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Lu Y, Zhu Y, Ye T, Nie Y, Jiang S, Lin L, Lu J. Physicochemical properties and microstructure of composite surimi gels: The effects of ultrasonic treatment and olive oil concentration. ULTRASONICS SONOCHEMISTRY 2022; 88:106065. [PMID: 35724484 PMCID: PMC9234091 DOI: 10.1016/j.ultsonch.2022.106065] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 05/23/2023]
Abstract
This study was conducted to evaluate the effects of extra virgin olive (EVO) oil incorporation on the physicochemical properties and microstructure of surimi gels subjected to ultrasound-assisted water-bath heating. As the oil content was increased from 0 to 5 g/100 g, the breaking force and gel strength of the surimi gels significantly decreased, while the whiteness level exhibited the opposite tendency irrespective of the heating method. Compared with the traditional water-bath heating method, the ultrasonic heating promoted the unfolding of the α-helix structure and intensified the formation of β-sheet content and non-covalent bonds (ionic bonds, hydrogen bonds, and disulfide bonds), especially disulfide bonds, which contributed to the further crosslinking of the proteins and to gelation, thereby improving the gels' strength. In addition, smaller cavities and compact microstructures were observed in the low-oil (≤3 g/100 g) surimi gels under ultrasonic treatment, which effectively prevented water migration in the gel network and resulted in a high water holding capacity and uniform water distribution. However, the ultrasonic treatment barely remedied the poor microstructures of the high-oil (>3 g/100 g) surimi gels owing to oil coalescence, which weakened the protein-protein interaction. In conclusion, ultrasonic treatment combined with water-bath heating significantly improved the gelation properties of the low-oil surimi gels, although it did not remarkably improve those of the high-oil gels. The choice of a suitable oil concentration could be of great importance for the production and functioning of surimi products via ultrasound-assisted treatments.
Collapse
Affiliation(s)
- Yufeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yajun Zhu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Tao Ye
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yongtao Nie
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Shaotong Jiang
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Lin Lin
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| | - Jianfeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| |
Collapse
|
45
|
Zhang M, Fan L, Liu Y, Huang S, Li J. Effects of proteins on emulsion stability: The role of proteins at the oil-water interface. Food Chem 2022; 397:133726. [PMID: 35908463 DOI: 10.1016/j.foodchem.2022.133726] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
To obtain a stable protein-added emulsion system, researchers have focused on the design of the oil-water interface. This review discussed the updated details of protein adsorption behavior at the oil-water interface. We evaluated methods of monitoring interfacial proteins as well as their strengths and limitations. Based on the effects of structure on protein adsorption, we summarized the contribution of pre-changing methods to adsorption. In addition, the interaction of proteins and other surface-active molecules at the interface had been emphasized. Results showed that protein adsorption is affected by conformation, oil polarity and aqueous environments. The monitoring of interfacial proteins through spectroscopic properties in actual emulsion systems is an emerging trend. Pre-changing could improve the protein adsorption and the purpose of pre-changing of proteins is similar. In the interaction with other surface-active molecules, co-adsorption is desirable. By co-adsorption, the respective advantages can be exploited to obtain a more stable emulsion system.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengquan Huang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510931, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
46
|
Effect of Xanthan Gum, Kappa-Carrageenan, and Guar Gum on the Functional Characteristics of Egg White Liquid and Intermolecular Interaction Mechanism. Foods 2022; 11:foods11142119. [PMID: 35885362 PMCID: PMC9317931 DOI: 10.3390/foods11142119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the effects of three polysaccharides, xanthan gum (XG), kappa-carrageenan (CA), and guar gum (GG), on the foaming and emulsifying properties of egg white liquid (EWL) and explored the intermolecular interactions and aggregation states in the initial polysaccharide−EWL complex. The results showed that the addition of XG and GG significantly improved the foaming stability of EWL on the one hand, from 66% to 78% and 69%, respectively (p < 0.05). On the other hand, the addition of XG and GG significantly improved the foam uniformity and density, and the average foam area decreased from 0.127 to 0.052 and 0.022 mm2, respectively (p < 0.05). The addition of XG and CA significantly improved the emulsification activity index (from 13.32 to 14.58 and 14.36 m2/mg, respectively, p < 0.05) and the emulsion stability index (from 50.89 to 53.62 and 52.18 min, respectively, p < 0.05), as well as the interfacial protein adsorption at the oil−water interface; it also reduced the creaming index. However, GG negatively affected these indicators. Furthermore, the electrostatic and hydrophobic interactions among molecules in EWL due to XG and the electrostatic, hydrogen bonding, and hydrophobic interactions among molecules in EWL due to CA ultimately led to the irregular aggregation of egg white proteins. Hydrophobic interactions and disulfide bonds between molecules in EWL−containing GG formed filamentous aggregations of egg white proteins. This work reveals that molecules in the polysaccharide−egg white complexes aggregate by interaction forces, which in turn have different effects on the foaming and emulsifying properties of egg white proteins.
Collapse
|
47
|
Insight Into the Effect of Carnosine on the Dispersibility of Myosin Under a Low-salt Condition and its Mechanism. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Luo J, Xu W, Liu Q, Zou Y, Wang D, Zhang J. Dielectric barrier discharge cold plasma treatment of pork loin: Effects on muscle physicochemical properties and emulsifying properties of pork myofibrillar protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Jiang S, Zhang M, Liu H, Li Q, Xue D, Nian Y, Zhao D, Shan K, Dai C, Li C. Ultrasound treatment can increase digestibility of myofibrillar protein of pork with modified atmosphere packaging. Food Chem 2022; 377:131811. [PMID: 35030336 DOI: 10.1016/j.foodchem.2021.131811] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/04/2022]
Abstract
We explored whether ultrasound treatment affected digestibility of myofibrillar protein (MP) isolated from modified atmosphere packed (MAP, 70% N2 and 30% CO2) pork. MP digestibility under pepsin and pancreatin treatments decreased significantly with storage time. Ultrasound treatment increased the digestibility and produced a greater number of smaller peptides. However, the total peptide count and unique peptide counts were significantly reduced. Moreover, active sulfhydryl, total sulfhydryl, particle size, turbidity and surface hydrophobicity of MP increased with time, while protein solubility and ATPase activity decreased. Compared with the untreated samples, ultrasound treatment increased protein solubility, surface hydrophobicity, and active sulfhydryl content, but decreased total sulfhydryl content (except 10 d), particle sizes, turbidity and ATPase activity. Ultrasound treatment resulted in a decline in β-turn and α-helix contents. Therefore, ultrasound is conducive to the digestion. Additionally, structural and functional properties of protein in MAP were less stable than those in vacuum-packed pork reported before.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingqun Nian
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Shan
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chen Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
50
|
Yu C, Li S, Sun S, Yan H, Zou H. Modification of emulsifying properties of mussel myofibrillar proteins by high-intensity ultrasonication treatment and the stability of O/W emulsion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|