1
|
Zhu Y, Shi Z, Pang Y, Zhou Y. Deferoxamine-loaded gelatin methacryloyl hydrogel endue 3D-printed PGCL-hydroxyapatite scaffold with angiogenesis, anti-oxidative and immunoregulatory capacities for facilitating bone healing. Int J Biol Macromol 2025; 295:139509. [PMID: 39756750 DOI: 10.1016/j.ijbiomac.2025.139509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Promoting angiogenesis, alleviating oxidative stress injury and inflammation response are crucial for bone healing. Herein, the deferoxamine (DFO)-loaded gelatin methacryloyl (GelMA) hydrogel coating (GelMA-DFO) was constructed on the 3D-printed poly(Glycolide-Co-Caprolactone)-hydroxyapatite (PGCL-HAP) scaffold. After the hydrogel coating was established, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and water contact angle measurement were employed to evaluate the characteristic and the biological properties were assessed. The modification of GelMA-DFO hydrogel endows the PGCL-HAP scaffold with angiogenic, anti-oxidative and immunoregulatory properties, overcoming the limitation of single-functionality in traditional bone tissue engineering (BTE) scaffolds. The improvement of hydrophilicity via GelMA-DFO hydrogel coating promoted cell adhesion onto the scaffold. Due to the load of DFO, the osteogenic and angiogenic effect of the scaffold in vitro were significantly enhanced. Importantly, the PGCL-HAP-DFO scaffold could effectively scavenge reactive oxygen species (ROS) and further polarized macrophage from pro-inflammation phenotype M1 to anti-inflammation phenotype M2. Experimental results in vivo further confirmed that the GelMA-DFO hydrogel coating promoted the osseointegration of PGCL-HAP scaffold via reducing inflammation, further enhancing new bone formation and tissue vascularization. Above, these results demonstrated that GelMA-DFO hydrogel endows PGCL-HAP scaffold with multiple bio-functions, thus accelerating the process of bone regeneration.
Collapse
Affiliation(s)
- Yanlin Zhu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zuosen Shi
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China
| | - Yuxuan Pang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Lyu W, Zhang Y, Ding S, Li X, Sun T, Luo J, Wang J, Li J, Li L. A bilayer hydrogel mimicking the periosteum-bone structure for innervated bone regeneration. J Mater Chem B 2024; 12:11187-11201. [PMID: 39356311 DOI: 10.1039/d4tb01923g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In bone tissue, nerves are primarily located in the periosteum and play an indispensable role in bone defect repair. However, most bone tissue engineering approaches ignored the reconstruction of the nerve network. Herein, we aimed to develop a bilayer hydrogel simulating periosteum-bone structure to induce innervated bone regeneration. The bottom "bone" layer consisted of gelatin methacryloyl (GelMA), poly(ethylene glycol) diacrylate (PEGDA), and nano-hydroxyapatite (nHA), whereas the upper "periosteum" layer consisted of GelMA, sodium alginate (SA) and MgCl2. The mechanical properties of the upper and bottom hydrogels were designed to be suitable for neurogenesis and osteogenesis, respectively. Besides, Mg2+ from the "periosteum" layer released at the early stage (within 7 d), which aligned with the optimal time window for nerve regeneration and osteogenic related neuropeptide release. Simultaneously, the prevention of long-term Mg2+ release (after 7 d) could avoid osteogenic inhibition caused by prolonged Mg2+ exposure. Additionally, the incorporation of nHA in the bottom "bone" layer supported the long-term osteogenesis due to its osteoconductivity and slow degradation. In vitro biological experiments revealed that the bilayer hydrogel (GS@Mg/GP@nHA) promoted neurite growth and calcitonin gene-related peptide (CGRP) expression in rat dorsal root ganglion (DRG) neurons, as well as the osteogenesis of rat bone-derived mesenchymal stem cells (BMSCs). Moreover, the in vivo experiments demonstrated that the GS@Mg/GP@nHA hydrogel efficiently promoted nerve network reconstruction and bone regeneration of rat calvarial bone defects. Altogether, the bilayer hydrogel GS@Mg/GP@nHA could promote innervated bone regeneration, providing new insights for biomaterial design for bone tissue engineering.
Collapse
Affiliation(s)
- Wenhui Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shaopei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Lei Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Xu H, Feng J, Dai N, Han Q, Zhou B, Yang G, Hu R. Self-assembling peptide hydrogel scaffold integrating stem cell-derived exosomes for infected bone defects. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1511-1522. [PMID: 38574263 DOI: 10.1080/09205063.2024.2336316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Infected bone defect (IBD) is a great challenge in orthopedics, which involves in bone loss and infection. Here, a self-assembling hydrogel scaffold (named AMP-RAD/EXO), integrating antimicrobial peptides(AMPs), RADA16 and BMSCs exosomes with an innovative strategy, is developed and applied in IBD treatment for sustained antimicrobial ability, accelerating osteoblasts proliferation and promoting bone regeneration. AMPs present an excellent ability to inhibit infection, RADA16 is a self-assembling peptide hydrogel for AMPs delivery, and BMSCs exosomes can promote the bone regeneration. The prepared AMP-RAD/EXO exhibited a polyporous 3D structure for imbibition of BMSCs exosomes and migration of osteoblasts. In vitro studies indicate AMP-RAD/EXO can inhibit the growth of Staphylococcus aureus, accelerate the proliferation and migration of BMSCs. More importantly, in vivo results also prove that AMP-RAD/EXO exhibit an excellent effect on IBD treatment. Thus, the prepared AMP-RAD/EXO provides a multifunctional scaffold concept for bone tissue engineering technology.
Collapse
Affiliation(s)
- Haiyan Xu
- Orthopaedics, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Jing Feng
- Nursing Department, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Ning Dai
- Nursing Department, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Qiong Han
- Orthopaedics, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Bei Zhou
- Nursing Department, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Guiyun Yang
- Nursing Department, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| | - Rui Hu
- Orthopaedics, Wuhan Fourth Hospital, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
4
|
Liu H, Li K, Guo B, Yuan Y, Ruan Z, Long H, Zhu J, Zhu Y, Chen C. Engineering an injectable gellan gum-based hydrogel with osteogenesis and angiogenesis for bone regeneration. Tissue Cell 2024; 86:102279. [PMID: 38007880 DOI: 10.1016/j.tice.2023.102279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Injectable hydrogels are currently a topic of great interest in bone tissue engineering, which could fill irregular bone defects in a short time and avoid traditional major surgery. Herein, we developed an injectable gellan gum (GG)-based hydrogel for bone defect repair by blending nano-hydroxyapatite (nHA) and magnesium sulfate (MgSO4). In order to acquire an injectable GG-based hydrogel with superior osteogenesis, nHA were blended into GG solution with an optimized proportion. For the aim of endowing this hydrogel capable of angiogenesis, MgSO4 was also incorporated. Physicochemical evaluation revealed that GG-based hydrogel containing 5% nHA (w/v) and 2.5 mM MgSO4 (GG/5%nHA/MgSO4) had appropriate sol-gel transition time, showed a porosity-like structure, and could release magnesium ions for at least 14 days. Rheological studies showed that the GG/5%nHA/MgSO4 hydrogel had a stable structure and repeatable self-healing properties. In-vitro results determined that GG/5%nHA/MgSO4 hydrogel presented superior ability on stimulating bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteogenic linage and human umbilical vein endothelial cells (HUVECs) to generate vascularization. In-vivo, GG/5%nHA/MgSO4 hydrogel was evaluated via a rat cranial defect model, as shown by better new bone formation and more neovascularization invasion. Therefore, the study demonstrated that the new injectable hydrogel, is a favorable bioactive GG-based hydrogel, and provides potential strategies for robust therapeutic interventions to improve the repair of bone defect.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Kaihu Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China
| | - Bin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Jianxi Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| | - Can Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| |
Collapse
|
5
|
Omidian H, Chowdhury SD. Advancements and Applications of Injectable Hydrogel Composites in Biomedical Research and Therapy. Gels 2023; 9:533. [PMID: 37504412 PMCID: PMC10379998 DOI: 10.3390/gels9070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Injectable hydrogels have gained popularity for their controlled release, targeted delivery, and enhanced mechanical properties. They hold promise in cardiac regeneration, joint diseases, postoperative analgesia, and ocular disorder treatment. Hydrogels enriched with nano-hydroxyapatite show potential in bone regeneration, addressing challenges of bone defects, osteoporosis, and tumor-associated regeneration. In wound management and cancer therapy, they enable controlled release, accelerated wound closure, and targeted drug delivery. Injectable hydrogels also find applications in ischemic brain injury, tissue regeneration, cardiovascular diseases, and personalized cancer immunotherapy. This manuscript highlights the versatility and potential of injectable hydrogel nanocomposites in biomedical research. Moreover, it includes a perspective section that explores future prospects, emphasizes interdisciplinary collaboration, and underscores the promising future potential of injectable hydrogel nanocomposites in biomedical research and applications.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
6
|
Pang Y, Guan L, Zhu Y, Niu R, Zhu S, Lin Q. Gallic acid-grafted chitosan antibacterial hydrogel incorporated with polydopamine-modified hydroxyapatite for enhancing bone healing. Front Bioeng Biotechnol 2023; 11:1162202. [PMID: 37334266 PMCID: PMC10273101 DOI: 10.3389/fbioe.2023.1162202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
An open critical-size bone defect is a major medical problem because of the difficulty in self-healing, leading to an increased risk of bacterial infection owing to wound exposure, resulting in treatment failure. Herein, a composite hydrogel was synthesized by chitosan, gallic acid, and hyaluronic acid, termed "CGH." Hydroxyapatite was modified with polydopamine (PDA@HAP) and introduced to CGH to obtain a mussel-inspired mineralized hydrogel (CGH/PDA@HAP). The CGH/PDA@HAP hydrogel exhibited excellent mechanical performances, including self-healing and injectable properties. Owing to its three-dimensional porous structure and polydopamine modifications, the cellular affinity of the hydrogel was enhanced. When adding PDA@HAP into CGH, Ca2+ and PO4 3- could release and then promoted differentiation of BMSCs into osteoblasts. Without any osteogenic agent or stem cells, the area of new bone at the site of defect was enhanced and the newly formed bone had a dense trabecular structure after implanting of the CGH/PDA@HAP hydrogel for 4 and 8 weeks. Moreover, the growth of Staphylococcus aureus and Escherichia coli was effectively inhibited through the grafting of gallic acid onto chitosan. Above, this study provides a reasonable alternative strategy to manage open bone defects.
Collapse
Affiliation(s)
- Yuxuan Pang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yanlin Zhu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ruijuan Niu
- Meilong Community Health Service Center, Shanghai, China
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
7
|
Zhang Z, Bi F, Guo W. Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth. Gels 2023; 9:gels9030245. [PMID: 36975694 PMCID: PMC10048036 DOI: 10.3390/gels9030245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Tissue regeneration and remineralization in teeth is a long-term and complex biological process, including the regeneration of pulp and periodontal tissue, and re-mineralization of dentin, cementum and enamel. Suitable materials are needed to provide cell scaffolds, drug carriers or mineralization in this environment. These materials need to regulate the unique odontogenesis process. Hydrogel-based materials are considered good scaffolds for pulp and periodontal tissue repair in the field of tissue engineering due to their inherent biocompatibility and biodegradability, slow release of drugs, simulation of extracellular matrix, and the ability to provide a mineralized template. The excellent properties of hydrogels make them particularly attractive in the research of tissue regeneration and remineralization in teeth. This paper introduces the latest progress of hydrogel-based materials in pulp and periodontal tissue regeneration and hard tissue mineralization and puts forward prospects for their future application. Overall, this review reveals the application of hydrogel-based materials in tissue regeneration and remineralization in teeth.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
8
|
Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydr Polym 2023; 311:120782. [PMID: 37028862 DOI: 10.1016/j.carbpol.2023.120782] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Gellan gum, a microbial exopolysaccharide, is biodegradable and has potential to fill several key roles in many fields from food to pharmacy, biomedicine and tissue engineering. In order to improve the physicochemical and biological properties of gellan gum, some researchers take advantage of numerous hydroxyl groups and the free carboxyl present in each repeating unit. As a result, design and development of gellan-based materials have advanced significantly. The goal of this review is to provide a summary of the most recent, high-quality research trends that have used gellan gum as a polymeric component in the design of numerous cutting-edge materials with applications in various fields.
Collapse
|
9
|
Chen ZJ, Lv JC, Wang ZG, Wang FY, Huang RH, Zheng ZL, Xu JZ, Wang J. Polycaprolactone Electrospun Nanofiber Membrane with Sustained Chlorohexidine Release Capability against Oral Pathogens. J Funct Biomater 2022; 13:jfb13040280. [PMID: 36547540 PMCID: PMC9785334 DOI: 10.3390/jfb13040280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple-pathogen periodontal disease necessitates a local release and concentration of antibacterial medication to control inflammation in a particular location of the mouth cavity. Therefore, it is necessary to effectively load and deliver medicine/antibiotics to treat numerous complex bacterial infections. This study developed chlorhexidine (CHX)/polycaprolactone (PCL) nanofiber membranes with controlled release properties as periodontal dressings to prevent or treat oral disorders. Electrostatic spinning was adopted to endow the nanofiber membranes with a high porosity, hydrophilicity, and CHX loading capability. The release of CHX occurred in a concentration-dependent manner. The CHX/PCL nanofiber membranes exhibited good biocompatibility with human periodontal ligament stem cells, with cell viability over 85% in each group via CCK-8 assay and LIVE/DEAD staining; moreover, the good attachment of the membrane was illustrated by scanning electron microscopy imaging. Through the agar diffusion assay, the nanofiber membranes with only 0.075 wt% CHX exhibited high antibacterial activity against three typical oral infection-causing bacteria: Porphyromonas gingivalis, Enterococcus faecalis, and Prevotella intermedia. The results indicated that the CHX/PCL nanofiber holds great potential as a periodontal dressing for the prevention and treatment periodontal disorders associated with bacteria.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Department of Clinical Cosmetology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang 441001, China
| | - Jia-Cheng Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei-Yu Wang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610032, China
| | - Ren-Huan Huang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zi-Li Zheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Correspondence: (J.-Z.X.); (J.W.)
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Correspondence: (J.-Z.X.); (J.W.)
| |
Collapse
|
10
|
Niu W, Chen Y, Wang L, Li J, Cui Z, Lv J, Yang F, Huo J, Zhang Z, Ju J. The combination of sodium alginate and chlorogenic acid enhances the therapeutic effect on ulcerative colitis by the regulation of inflammation and the intestinal flora. Food Funct 2022; 13:10710-10723. [PMID: 36173280 DOI: 10.1039/d2fo01619b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (CA) and sodium alginate (SA) each have good therapeutic effects on ulcerative colitis (UC) owing to their antioxidant and anti-inflammatory activity. This study aimed to investigate the effects of CA alone and in combination with SA on inflammatory cells and UC mice. In the Lipopolysaccharide (LPS)-induced RAW 264.7 inflammatory cell model, Nitric oxide (NO) and interleukin-6 (IL-6) levels were significantly lower after treatment with CA plus SA than with CA alone. In the DSS-induced UC mouse model, compared with CA alone, CA plus SA showed a better ability to alleviate weight loss, reduce the disease activity index (DAI), improve the colonic mucosa, reduce the expression of inflammatory factors in the serum and myeloperoxidase (MPO) in colonic tissue, increase superoxide dismutase (SOD) levels, protect the intestinal mucosa and regulate the abundance of Actinobacteriota, Lactobacillus, Bifidobacterium, Bacteroides, Subdoligranulum and Streptococcus. Thus, CA plus SA can improve the therapeutic efficacy of CA in UC by regulating inflammatory factors, oxidative stress, and the intestinal flora and by protecting ulcerative wounds. These findings broaden our understanding of the role of the combination of SA and CA in enhancing the effects of CA on UC and provide strategies for prevention and treatment.
Collapse
Affiliation(s)
- Wei Niu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuxuan Chen
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ligui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhao Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiajie Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fuyan Yang
- Anhui University of Chinese Medicine, Hefei, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Chen M, Tan H, Xu W, Wang Z, Zhang J, Li S, Zhou T, Li J, Niu X. A Self-Healing, Magnetic and Injectable Biopolymer Hydrogel Generated by Dual Cross-Linking for Drug Delivery and Bone Repair. Acta Biomater 2022; 153:159-177. [PMID: 36152907 DOI: 10.1016/j.actbio.2022.09.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
Injectable hydrogels based on various functional biocompatible materials have made rapid progress in the field of bone repair. In this study, a self-healing and injectable polysaccharide-based hydrogel was prepared for bone tissue engineering. The hydrogel was made of carboxymethyl chitosan (CMCS) and calcium pre-cross-linked oxidized gellan gum (OGG) cross-linked by the Schiff-base reaction. Meanwhile, magnetic hydroxyapatite/gelatin microspheres (MHGMs) were prepared by the emulsion cross-linking method. The antibacterial drugs, tetracycline hydrochloride (TH) and silver sulfadiazine (AgSD), were embedded into the MHGMs. To improve the mechanical and biological properties of the hydrogels, composite hydrogels were prepared by compounding hydroxyapatite (HAp) and drug-embedded MHGMs. The physical, chemical, mechanical and rheological properties of the composite hydrogels were characterized, as well as in vitro antibacterial tests and biocompatibility assays, respectively. Our results showed that the composite hydrogel with 6% (w/v) HAp and 10 mg/mL MHGMs exhibited good magnetic responsiveness, self-healing and injectability. Compared with the pure hydrogel, the composite hydrogel showed a 38.8% reduction in gelation time (196 to 120 s), a 65.6% decrease in swelling rate (39.4 to 13.6), a 51.9% increase in mass residual after degradation (79.5 to 120.8%), and a 143.7% increase in maximum compressive stress (53.6 to 130.6 KPa). In addition, this composite hydrogel showed good drug retardation properties and antibacterial effects against both S. aureus and E. coli. CCK-8 assay showed that composite hydrogel maintained high cell viability (> 87%) and rapid cell proliferation after 3 days, indicating that this smart hydrogel is expected to be an alternative scaffold for drug delivery and bone regeneration. STATEMENT OF SIGNIFICANCE: Biopolymer hydrogels have been considered as the promising materials for the treatment of tissue engineering and drug delivery. Injectable hydrogels with and self-healing properties and responsiveness to external stimuli have been extensively investigated as cell scaffolds and bone defects, due to their diversity and prolonged lifetime. Magnetism has also been involved in biomedical applications and played significant roles in targeted drug delivery and anti-cancer therapy. We speculate that development of dual cross-linked hydrogels basing biopolymers with multi-functionalities, such as injectable, self-healing, magnetic and anti-bacterial properties, would greatly broaden the application for bone tissue regeneration and drug delivery.
Collapse
Affiliation(s)
- Mengying Chen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Huaping Tan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China.
| | - Weijie Xu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Zijia Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Jinglei Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Shengke Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Tianle Zhou
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Jianliang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Xiaohong Niu
- Department of Luoli, Nanjing Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210014, China
| |
Collapse
|
12
|
Liu Y, He L, Li J, Luo J, Liang K, Yin D, Tao S, Yang J, Li J. Mussel-Inspired Organic–Inorganic Implant Coating Based on a Layer-by-Layer Method for Anti-infection and Osteogenesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- School of Stomatology, Shandong First Medical University, Jinan 250021, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Gene Regulations upon Hydrogel-Mediated Drug Delivery Systems in Skin Cancers-An Overview. Gels 2022; 8:gels8090560. [PMID: 36135270 PMCID: PMC9498739 DOI: 10.3390/gels8090560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence of skin cancer has increased dramatically in recent years, particularly in Caucasian populations. Specifically, the metastatic melanoma is one of the most aggressive cancers and is responsible for more than 80% of skin cancer deaths around the globe. Though there are many treatment techniques, and drugs have been used to cure this belligerent skin cancer, the side effects and reduced bioavailability of drug in the targeted area makes it difficult to eradicate. In addition, cellular metabolic pathways are controlled by the skin cancer driver genes, and mutations in these genes promote tumor progression. Consequently, the MAPK (RAS-RAF-MEK-ERK pathway), WNT and PI3K signaling pathways are found to be important molecular regulators in melanoma development. Even though hydrogels have turned out to be a promising drug delivery system in skin cancer treatment, the regulations at the molecular level have not been reported. Thus, we aimed to decipher the molecular pathways of hydrogel drug delivery systems for skin cancer in this review. Special attention has been paid to the hydrogel systems that deliver drugs to regulate MAPK, PI3K-AKT-mTOR, JAK-STAT and cGAS-STING pathways. These signaling pathways can be molecular drivers of skin cancers and possible potential targets for the further research on treatment of skin cancers.
Collapse
|
14
|
Duarte LG, Picone CS. Antimicrobial activity of lactoferrin-chitosan-gellan nanoparticles and their influence on strawberry preservation. Food Res Int 2022; 159:111586. [DOI: 10.1016/j.foodres.2022.111586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 01/09/2023]
|
15
|
Deliogullari B, Ilhan‐Ayisigi E, Cakmak B, Saglam‐Metiner P, Kaya N, Coskun‐Akar G, Yesil‐Celiktas O. Synthesis of an injectable heparin conjugated poloxamer hydrogel with high elastic recoverability for temporomandibular joint disorders. J Appl Polym Sci 2022. [DOI: 10.1002/app.52736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Buse Deliogullari
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences Ege University Bornova Izmir Turkey
| | - Esra Ilhan‐Ayisigi
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
- Genetic and Bioengineering Department, Faculty of Engineering and Architecture Kirsehir Ahi Evran University Kirsehir Turkey
| | - Betul Cakmak
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| | - Pelin Saglam‐Metiner
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| | - Nusret Kaya
- Department of Materials Science and Engineering, Faculty of Engineering and Architecture Izmir Katip Celebi University Cigli Izmir Turkey
| | - Gulcan Coskun‐Akar
- Department of Prosthodontics, Faculty of Dentistry Ege University Izmir Turkey
| | - Ozlem Yesil‐Celiktas
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences Ege University Bornova Izmir Turkey
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| |
Collapse
|
16
|
Xu L, Ye Q, Xie J, Yang J, Jiang W, Yuan H, Li J. An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for infected bone defect repair. J Mater Chem B 2022; 10:282-292. [PMID: 34908091 DOI: 10.1039/d1tb02230j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The treatment of infected bone defects in complex anatomical structures, such as oral and maxillofacial structures, remains an intractable clinical challenge. Therefore, advanced biomaterials that have excellent anti-infection activity and allow convenient delivery are needed. We fabricated an innovative injectable gellan gum (GG)-based hydrogel loaded with nanohydroxyapatite particles and chlorhexidine (nHA/CHX). The hydrogel has a porous morphology, suitable swelling ratio, and good biocompatibility. It exerts strong antibacterial activity against Staphylococcus aureus growth and biofilm formation in vitro. We successfully established an infected calvarial defect rat model. Bacterial colony numbers were significantly lower in tissues surrounding the bone in rats of the GG/nHA/CHX group after debride surgery and hydrogel implantation in the defect regions than in rats of the blank group. Rats in the GG/nHA/CHX group exhibited significantly increased new bone formation compared to those in the blank group at 4 and 8 weeks. These findings indicate that gellan gum-based hydrogel with nHA/CHX can accelerate the repair of infected bone defects.
Collapse
Affiliation(s)
- Laijun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
| | - Qing Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Wentao Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510060, China
| | - He Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
18
|
Tang Y, Hu M, Tang F, Huang R, Wang H, Wu D, Lan P. Easily-injectable shear-thinning hydrogel provides long-lasting submucosal barrier for gastrointestinal endoscopic surgery. Bioact Mater 2021; 15:44-52. [PMID: 35386335 PMCID: PMC8940951 DOI: 10.1016/j.bioactmat.2021.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022] Open
Abstract
Submucosal injection material has shown protective effect against gastrointestinal injury during endoscopic surgery in clinic. However, the protective ability of existing submucosal injection material is strictly limited by their difficult injectability and short barrier time. Herein, we report a shear-thinning gellan gum hydrogel that simultaneously has easy injectability and long-lasting barrier function, together with good hemostatic property and biocompatibility. Shear-thinning property endows our gellan gum hydrogel with excellent endoscopic injection performance, and the injection pressure of our gellan gum hydrogel is much lower than that of the small molecule solution (50 wt% dextrose) when injected through the endoscopic needle. More importantly, our gellan gum hydrogel shows much stronger barrier retention ability than normal saline and sodium hyaluronate solution in the ex vivo and in vivo models. Furthermore, our epinephrine-containing gellan gum hydrogel has a satisfactory hemostatic effect in the mucosal lesion resection model of pig. These results indicate an appealing application prospect for gellan gum hydrogel utilizing as a submucosal injection material in endoscopic surgery. Submucosal injection materials are widely used in endoscopic surgery to protect against gastrointestinal injury. Gellan gum hydrogel with shear-thinning character is a novel submucosal injection material. Gellan gum hydrogel simultaneously has easy injectability and long-lasting barrier performance in vivo. Epinephrine-containing gellan gum hydrogel has a satisfactory hemostatic effect.
Collapse
|
19
|
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021; 21:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Hydrogel is a kind of 3D polymer network with strong swelling ability in water and appropriate mechanical and biological properties, which make it feasible to maintain bioactive substances and has promising applications in the fields of biomaterials, soft machines, and artificial tissues. Unfortunately, traditional hydrogels prepared by chemical crosslinking have poor mechanical properties and limited functions, which limit their further application. In recent years, with the continuous development of nanoparticle research, more and more studies have combined nanoparticles with hydrogels to make up for the shortcomings of traditional hydrogels. In this article, the types and functions of hydrogels and nanomaterials are introduced first, as well as the functions and applications of injectable nanocomposite hydrogels (INHs), then the latest progress of INHs for cancer treatment is reviewed, some existing problems are summarized, and the application prospect of NHs is prospected.
Collapse
Affiliation(s)
- Wenzhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qida Zong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
20
|
Baranov N, Popa M, Atanase LI, Ichim DL. Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021; 26:2735. [PMID: 34066568 PMCID: PMC8125343 DOI: 10.3390/molecules26092735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives. Polymer-drug systems, which have different forms of presentation, chosen depending on the nature of the disease, the mode of administration, the type of polymer used, etc., have become very promising. Hydrogels, for example (in the form of films, micro-/nanoparticles, implants, inserts, etc.), contain the drug included, encapsulated, or adsorbed on the surface. Biologically active compounds can also be associated directly with the polymer chains by covalent or ionic binding (polymer-drug conjugates). Not just any polymer can be used as a support for drug combination due to the constraints imposed by the fact that the system works inside the body. Biopolymers, especially polysaccharides and their derivatives and to a lesser extent proteins, are preferred for this purpose. This paper aims to review in detail the biopolymer-drug systems that have emerged in the last decade as alternatives to the classical treatment of periodontal disease.
Collapse
Affiliation(s)
- Nicolae Baranov
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| | | | | |
Collapse
|
21
|
Mohd Nadzir M, Nurhayati RW, Idris FN, Nguyen MH. Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers (Basel) 2021; 13:530. [PMID: 33578978 PMCID: PMC7916691 DOI: 10.3390/polym13040530] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are an essential group of compounds secreted by bacteria. These versatile EPSs are utilized individually or in combination with different materials for a broad range of biomedical field functions. The various applications can be explained by the vast number of derivatives with useful properties that can be controlled. This review offers insight on the current research trend of nine commonly used EPSs, their biosynthesis pathways, their characteristics, and the biomedical applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Masrina Mohd Nadzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Retno Wahyu Nurhayati
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia;
- Stem Cell and Tissue Engineering Research Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia
| | - Farhana Nazira Idris
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Minh Hong Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam;
- Bioresource Research Center, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|