1
|
Costa JB, Nascimento LGL, Martins E, Carvalho AFD. Immobilization of the β-galactosidase enzyme by encapsulation in polymeric matrices for application in the dairy industry. J Dairy Sci 2024; 107:9100-9109. [PMID: 39033918 DOI: 10.3168/jds.2024-24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Lactose intolerance affects ∼65% of the global adult population, leading to the demand for lactose-free products. The enzyme β-galactosidase (βG) is commonly used in the industry to produce such products, but its recovery after lactose hydrolysis is challenging. In this scenario, the study aims to encapsulate βG within capsules, varying in dimensions and wall materials, to ensure their suitability for efficient industrial recovery. The enzyme βG was encapsulated through ionic gelation using alginate and its blends with pectin, maltodextrin, starch, or whey protein as wall materials. The capsules produced underwent evaluation for encapsulation efficiency, release profiles, activity of the βG enzyme, and the decline in enzyme activity when reused over multiple cycles. Alginate at 5% wt/vol concentrations, alone or combined with polymers such as maltodextrin, starch, or whey protein, achieved encapsulation efficiencies of ∼98%, 98%, 80%, and 88%, respectively. The corresponding enzyme recovery rates were 34%, 19%, 31%, and 48%. Capsules made with an alginate-pectin blend exhibited no significant hydrolysis and maintained an encapsulation efficiency of 79%. Encapsulation with alginate alone demonstrated on poor retention of enzyme activity, showing a loss of 74% after just 4 cycles of reuse. Conversely, when alginate was mixed with starch or whey protein concentrate, the loss of enzyme activity was less than 40% after 4 reuses. These results highlight the benefits of combining encapsulation materials to improve enzyme recovery and reuse, offering potential economic advantages for the dairy industry.
Collapse
Affiliation(s)
- Jessiele Barbosa Costa
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Antônio Fernandes De Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Gao J, Zhang L, Zhao D, Lu X, Sun Q, Du H, Yang H, Lu K. Aspergillus oryzae β-D-galactosidase immobilization on glutaraldehyde pre-activated amino-functionalized magnetic mesoporous silica: Performance, characteristics, and application in the preparation of sesaminol. Int J Biol Macromol 2024; 270:132101. [PMID: 38734354 DOI: 10.1016/j.ijbiomac.2024.132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Aspergillus oryzae β-D-galactosidase (β-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, β-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, β-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-β-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of β-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-β-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-β-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-β-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-β-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-β-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.
Collapse
Affiliation(s)
- Jinhong Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China; Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Lingli Zhang
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, China
| | - Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Qiang Sun
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450044, China
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China
| | - Hongyan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450044, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China.
| |
Collapse
|
3
|
Liu P, Chen Y, Ma C, Ouyang J, Zheng Z. β-Galactosidase: a traditional enzyme given multiple roles through protein engineering. Crit Rev Food Sci Nutr 2023; 65:1306-1325. [PMID: 38108277 DOI: 10.1080/10408398.2023.2292282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
β-Galactosidases are crucial carbohydrate-active enzymes that naturally catalyze the hydrolysis of galactoside bonds in oligo- and disaccharides. These enzymes are commonly used to degrade lactose and produce low-lactose and lactose-free dairy products that are beneficial for lactose-intolerant people. β-galactosidases exhibit transgalactosylation activity, and they have been employed in the synthesis of galactose-containing compounds such as galactooligosaccharides. However, most β-galactosidases have intrinsic limitations, such as low transglycosylation efficiency, significant product inhibition effects, weak thermal stability, and a narrow substrate spectrum, which greatly hinder their applications. Enzyme engineering offers a solution for optimizing their catalytic performance. The study of the enzyme's structure paves the way toward explaining catalytic mechanisms and increasing the efficiency of enzyme engineering. In this review, the structure features of β-galactosidases from different glycosyl hydrolase families and the catalytic mechanisms are summarized in detail to offer guidance for protein engineering. The properties and applications of β-galactosidases are discussed. Additionally, the latest progress in β-galactosidase engineering and the strategies employed are highlighted. Based on the combined analysis of structure information and catalytic mechanisms, the ultimate goal of this review is to furnish a thorough direction for β-galactosidases engineering and promote their application in the food and dairy industries.
Collapse
Affiliation(s)
- Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuehua Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Huerta M, Cornejo F, Illanes A, Vera C, Guerrero C. Enzymatic production of rare sugars with a new mutant of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. BIORESOURCE TECHNOLOGY 2023; 391:129936. [PMID: 39491117 DOI: 10.1016/j.biortech.2023.129936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) can epimerize and isomerize lactose into epilactose and lactulose respectively. Competition between these reactions reactions has prompted the search for new enzymes to drive the reaction in one direction or the other. The isomerization and epimerization capacity of a novel mutant CsCE (CsCE H356N) was evaluated, obtaining a maximum lactulose yield of 64.3 % and a lactulose selectivity of 9.9. A Michaelis-Menten constant of 551.93 mM and a catalytic efficiency of 0,058 s-1 mM-1 were obtained for lactose epimerization. The ability of CsCE H356N to recognize other substrates was evaluated using lactulose, glucose, mannose, fructose, galactose, talose and tagatose as substrates, assessing the reversibility of such reactions. Yields of 14.8 % mannose and 4.8 % of fructose were obtained from glucose, while talose and tagatose yields of 9.2 % and 5.2 % were obtained from galactose respectively. No significant reaction occurred with lactulose, fructose or tagatose as substrates.
Collapse
Affiliation(s)
- Macarena Huerta
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Fabian Cornejo
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| |
Collapse
|
5
|
Kalathinathan P, Sain A, Pulicherla K, Kodiveri Muthukaliannan G. A Review on the Various Sources of β-Galactosidase and Its Lactose Hydrolysis Property. Curr Microbiol 2023; 80:122. [PMID: 36862237 DOI: 10.1007/s00284-023-03220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
β-Galactosidase is a glycoside hydrolase enzyme that possesses both hydrolytic and transgalactosylation properties and has several benefits and advantages in the food and dairy industries. The catalytic process of β-galactosidase involves the transfer of a sugar residue from a glycosyl donor to an acceptor via a double-displacement mechanism. Hydrolysis prevails when water acts as an acceptor, resulting in the production of lactose-free products. Transgalactosylation prevails when lactose acts as an acceptor, resulting in the production of prebiotic oligosaccharides. β-Galactosidase is also obtained from many sources including bacteria, yeast, fungi, plants, and animals. However, depending on the origin of the β-galactosidase, the monomer composition and their bonds may differ, thereby influencing their properties and prebiotic efficacy. Thus, the increasing demand for prebiotics in the food industry and the search for new oligosaccharides have compelled researchers to search for novel sources of β-galactosidase with diverse properties. In this review, we discuss the properties, catalytic mechanisms, various sources and lactose hydrolysis properties of β-galactosidase.
Collapse
Affiliation(s)
- Pooja Kalathinathan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Avtar Sain
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
6
|
Wahba MI. Glutaraldehyde-copper gelled chitosan beads: Characterization and utilization as covalent immobilizers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
7
|
Duan F, Sun T, Zhang J, Wang K, Wen Y, Lu L. Recent innovations in immobilization of β-galactosidases for industrial and therapeutic applications. Biotechnol Adv 2022; 61:108053. [DOI: 10.1016/j.biotechadv.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
8
|
Galacto-Oligosaccharide (GOS) Synthesis during Enzymatic Lactose-Free Milk Production: State of the Art and Emerging Opportunities. BEVERAGES 2022. [DOI: 10.3390/beverages8020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Much attention has recently been paid to β-Galactosidases (β-D-galactoside galactohidrolase; EC 3.2.1.23), commonly known as lactases, due to the lactose intolerance of the human population and the importance of dairy products in the human diet. This enzyme, produced by microorganisms, is being used in the dairy industry for hydrolyzing the lactose found in milk to produce lactose-free milk (LFM). Conventionally, β-galactosidases catalyze the hydrolysis of lactose to produce glucose and galactose in LFM; however, they can also catalyze transgalactosylation reactions that produce a wide range of galactooligosaccharides (GOS), which are functional prebiotic molecules that confer health benefits to human health. In this field, different works aims to identify novel microbial sources of β-galactosidase for removing lactose from milk with the relative GOS production. Lactase extracted from thermophilic microorganisms seems to be more suitable for the transgalactosylation process at relatively high temperatures, as it inhibits microbial contamination. Different immobilization methods, such as adsorption, covalent attachment, chemical aggregation, entrapment and micro-encapsulation, have been used to synthesize lactose-derived oligosaccharides with immobilized β-galactosidases. In this mini-review, particular emphasis has been given to the immobilization techniques and bioreactor configurations developed for GOS synthesis in milk, in order to provide a more detailed overview of the biocatalytic production of milk oligosaccharides at industrial level.
Collapse
|
9
|
Zhao JC, Mu YL, Gu XY, Xu XN, Guo TT, Kong J. Site-directed mutation of β-galactosidase from Streptococcus thermophilus for galactooligosaccharide-enriched yogurt making. J Dairy Sci 2021; 105:940-949. [PMID: 34955252 DOI: 10.3168/jds.2021-20905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
β-Galactosidase is one of the most important enzymes used in dairy processing. It converts lactose into glucose and galactose, and also catalyzes galactose to form galactooligosaccharides (GOS), so-called prebiotics. However, most of the β-galactosidases from the starter cultures have low transgalactosylation activities, the process that results in galactose accumulation in yogurt. Here, a site-directed mutation strategy was attempted, to genetically modify β-galactosidase from Streptococcus thermophilus. Out of 28 Strep. thermophilus strains, a β-galactosidase gene named bgaQ, encoded for high β-galactosidase hydrolysis activity (BgaQ), was cloned from the strain Strep. thermophilus SDMCC050237. It was 3,081 bp in size, with 1,027 deduced amino acid residuals, which belonged to the GH2 family. After replacing the Tyr801 and Pro802 around the active sites of BgaQ with His801 and Gly802, the GOS synthesis of the generated mutant protein BgaQ-8012 increased from 20.5% to 26.7% at 5% lactose, and no hydrolysis activity altered obviously. Subsequently, the purified BgaQ or BgaQ-8012 was added to sterilized milk inoculated with 2 starters from Strep. thermophilus SDMCC050237 and Lactobacillus delbrueckii ssp. bulgaricus ATCC11842. The GOS yields with added BgaQ or BgaQ-8012 rose to 5.8 and 8.3 g/L, respectively, compared with a yield of 3.7 g/L without enzymes added. Meanwhile, the addition of the BgaQ or BgaQ-8012 reduced the lactose content by 49.3% and 54.4% in the fermented yogurt and shortened the curd time. Therefore, this study provided a site-directed mutation strategy for improvement of the transgalactosylation activity of β-galactosidase from Strep. thermophilus for GOS-enriched yogurt making.
Collapse
Affiliation(s)
- J C Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Y L Mu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - X Y Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - X N Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - T T Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - J Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| |
Collapse
|
10
|
Ramírez N, Ubilla C, Campos J, Valencia F, Aburto C, Vera C, Illanes A, Guerrero C. Enzymatic production of lactulose by fed-batch and repeated fed-batch reactor. BIORESOURCE TECHNOLOGY 2021; 341:125769. [PMID: 34416660 DOI: 10.1016/j.biortech.2021.125769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The effects of the most significant operational variables on reactor performance of fed-batch and repeated fed-batch were evaluated in the lactulose production by enzymatic transgalactosylation. Feed flowrate in the fed stage (F) and fructose to lactose molar ratio (Fr/L) were the variables that mostly affected the values of lactulose yield (YLu), lactulose productivity (πLu) and selectivity of transgalactosylation (SLu/TOS). Maximum YLu of 0.21 g lactulose per g lactose was obtained at 50% w/w inlet carbohydrates concentration (IC) of, 50 °C, Fr/L 8, F 1 mL⋅min-1, 200 IU∙gLactose-1 reactor enzyme load and pH 4.5. At these conditions the selectivity was 7.4, productivity was 0.71 gLu∙g-1∙h-1and lactose conversion was 0.66. The operation by repeated fed batch increases the efficiency of use of the biocatalysts (EB) and the accumulated productivity compared to batch and fed batch operation with the same biocatalyst. EB obtained was 4.13 gLu∙mgbiocatalyst protein-1, 10.6 times higher than in fed-batch.
Collapse
Affiliation(s)
- Nicolás Ramírez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Claudia Ubilla
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Javiera Campos
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Francisca Valencia
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| |
Collapse
|
11
|
Muñoz K, Ahumada D, Arenas F, Guerrero C, Illanes A, Vera C. Effect of product partition on the synthesis of butyl-β-D-galactoside from Aspergillus oryzae. BIORESOURCE TECHNOLOGY 2021; 340:125697. [PMID: 34358984 DOI: 10.1016/j.biortech.2021.125697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The effect of donor substrate and products partitioning on the performance of butyl-β-galactoside synthesis with Aspergillus oryzae β-galactosidase was studied. Firstly, the partition coefficient of the donor substrate (lactose) and the reaction products (glucose, galactose and butyl-β-galactoside) were determined in the aqueous and organic phases of the reaction medium. In the temperature range studied (30 to 50 °C), butyl β-galactoside was roughly 130 and 30-fold more soluble in the organic phase than lactose and the monosaccharides, respectively. Afterward, the effect of the 1-butanol/ aqueous phase ratio (α) on the reaction was evaluated in the range from 0.25 to 4. Results show that higher values of α reduce the incidence of secondary hydrolysis by favoring the extraction of butyl-β-galactoside into the organic phase where it is not hydrolyzed, leading to higher yields. Also, major interfacial properties for butyl-β-galactoside were determined at 25 °C.
Collapse
Affiliation(s)
- Kevin Muñoz
- Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Diego Ahumada
- Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Felipe Arenas
- Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso (PUCV). Av, Brasil 2085, Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso (PUCV). Av, Brasil 2085, Valparaíso, Chile
| | - Carlos Vera
- Biology Department, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
12
|
Tavernini L, Romero O, Aburto C, López-Gallego F, Illanes A, Wilson L. Development of a Hybrid Bioinorganic Nanobiocatalyst: Remarkable Impact of the Immobilization Conditions on Activity and Stability of β-Galactosidase. Molecules 2021; 26:molecules26144152. [PMID: 34299429 PMCID: PMC8303607 DOI: 10.3390/molecules26144152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023] Open
Abstract
Hybrid bioinorganic biocatalysts have received much attention due to their simple synthesis, high efficiency, and structural features that favor enzyme activity and stability. The present work introduces a biomineralization strategy for the formation of hybrid nanocrystals from β-galactosidase. The effects of the immobilization conditions were studied, identifying the important effect of metal ions and pH on the immobilization yield and the recovered activity. For a deeper understanding of the biomineralization process, an in silico study was carried out to identify the ion binding sites at the different conditions. The selected β-galactosidase nanocrystals showed high specific activity (35,000 IU/g biocatalyst) and remarkable thermal stability with a half-life 11 times higher than the soluble enzyme. The nanobiocatalyst was successfully tested for the synthesis of galacto-oligosaccharides, achieving an outstanding performance, showing no signs of diffusional limitations. Thus, a new, simple, biocompatible and inexpensive nanobiocatalyst was produced with high enzyme recovery (82%), exhibiting high specific activity and high stability, with promising industrial applications.
Collapse
Affiliation(s)
- Luigi Tavernini
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Oscar Romero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (O.R.); (L.W.)
| | - Carla Aburto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain;
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Correspondence: (O.R.); (L.W.)
| |
Collapse
|