1
|
Wang L, Chen S, Li C, Gu Z, Kong H, Ban X, Li Z. Enhancement of β-Cyclodextrin Production Using a Glycogen Debranching Enzyme from Saccharolobus solfataricus STB09. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6491-6499. [PMID: 38500439 DOI: 10.1021/acs.jafc.3c09922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Efficient production of cyclodextrins (CDs) has always been challenging. CDs are primarily produced from starch via cyclodextrin glycosyltransferase (CGTase), which acts on α-1,4 glucosidic bonds; however, α-1,6 glucosidic bonds in starch suppress the enzymatic production of CDs. In this study, a glycogen debranching enzyme from Saccharolobus solfataricus STB09 (SsGDE) was utilized to promote the production of β-CD by hydrolyzing α-1,6 glucosidic bonds. The addition of SsGDE (750 U/g of starch) at the liquefaction stage remarkably improved the β-CD yield, with a 43.9% increase. Further mechanism exploration revealed that SsGDE addition could hydrolyze specific branches with less generation of byproducts, thereby promoting CD production. The chain segments of a degree of polymerization ≥13 produced by SsGDE debranching could also be utilized by β-CGTase to convert into CDs. Overall, these findings proposed a new approach of combining SsGDE with β-CGTase to enhance the CD yield.
Collapse
Affiliation(s)
- Luxiao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Shuangdi Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, Jiangsu, China
| |
Collapse
|
2
|
Naik B, Kumar V, Goyal SK, Dutt Tripathi A, Mishra S, Joakim Saris PE, Kumar A, Rizwanuddin S, Kumar V, Rustagi S. Pullulanase: unleashing the power of enzyme with a promising future in the food industry. Front Bioeng Biotechnol 2023; 11:1139611. [PMID: 37449089 PMCID: PMC10337586 DOI: 10.3389/fbioe.2023.1139611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Pullulanases are the most important industrial group of enzymes in family 13 glycosyl hydrolases. They hydrolyze either α-1,6 and α-1,4 or both glycosidic bonds in pullulan as well as other carbohydrates to produce glucose, maltose, and maltotriose syrups, which have important uses in food and other related sectors. However, very less reports are available on pullulanase production from native strains because of low yield issues. In line with the increasing demands for pullulanase, it has become important to search for novel pullulanase-producing microorganisms with high yields. Moreover, high production costs and low yield are major limitations in the industrial production of pullulanase enzymes. The production cost of pullulanase by using the solid-state fermentation (SSF) process can be minimized by selecting agro-industrial waste. This review summarizes the types, sources, production strategies, and potential applications of pullulanase in different food and other related industries. Researchers should focus on fungal strains producing pullulanase for better yield and low production costs by using agro-waste. It will prove a better enzyme in different food processing industries and will surely reduce the cost of products.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - S. K. Goyal
- Department of Agricultural Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Uttarakhand, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCLAS, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Li X, Jiang T, Wang Y, Dong J, Jin Z, Bai Y. Exploring the roles of amylopectin in starch modification with Limosilactobacillus reuteri 121 4,6-α-glucanotransferase via developed methods. Int J Biol Macromol 2023:125040. [PMID: 37230441 DOI: 10.1016/j.ijbiomac.2023.125040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Limosilactobacillus reuteri 121 4,6-α-glucanotransferase (GtfBΔN) modifies starch by cleaving (α1 → 4) linkages and introducing non-branched (α1 → 6) linkages to produce functional starch derivatives. Research has mainly focused on GtfBΔN converting amylose (linear substrate), whereas the conversion of amylopectin (branched substrate) has not been studied in detail. In this study, we used GtfBΔN to understand amylopectin modification and performed a set of experiments to analyze this modification pattern. The donor substrates were segments from the non-reducing ends to the nearest branch point in amylopectin as shown from the results of the chain length distribution of GtfBΔN-modified starches. Decreased and increased contents of β-limit dextrin and reducing sugars, respectively, during the incubation of β-limit dextrin with GtfBΔN indicated that the segments from the reducing end to the nearest branch point in amylopectin act as donor substrates. Dextranase was involved in the hydrolysis of the GtfBΔN conversion products of three different substrates groups, maltohexaose (G6), amylopectin, and G6 plus amylopectin. No reducing sugars were detected, therefore, amylopectin was not used as an acceptor substrate, and no non-branched (α1 → 6) linkages were introduced into it. Thus, these methods provide a reasonable and effective approach to studying GtfB-like 4,6-α-glucanotransferase in analyzing the roles and contribution of branched substrates.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jingjing Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Liang X, Kong Y, Sun H, Zhao R, Jiao L, Zhang W, Liu B. Study on the Interaction Mechanism of Methoxy Polyethylene Glycol Maleimide with Sweet Potato β-Amylase. Molecules 2023; 28:2188. [PMID: 36903434 PMCID: PMC10005407 DOI: 10.3390/molecules28052188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
In this study, sweet potato β-amylase (SPA) was modified by methoxy polyethylene glycol maleimide (molecular weight 5000, Mal-mPEG5000) to obtain the Mal-mPEG5000-SPA modified β-amylase and the interaction mechanism between SPA and Mal-mPEG5000 was investigated. the changes in the functional groups of different amide bands and modifications in the secondary structure of enzyme protein were analyzed using infrared spectroscopy and circular dichroism spectroscopy. The addition of Mal-mPEG5000 transformed the random curl in the SPA secondary structure into a helix structure, forming a folded structure. The Mal-mPEG5000 improved the thermal stability of SPA and protected the structure of the protein from breaking by the surrounding. The thermodynamic analysis further implied that the intermolecular forces between SPA and Mal-mPEG5000 were hydrophobic interactions and hydrogen bonds due to the positive values of ΔHθ and ΔSθ. Furthermore, the calorie titration data showed that the binding stoichiometry for the complexation of Mal-mPEG5000 to SPA was 1.26, and the binding constant was 1.256 × 107 mol/L. The binding reaction resulted from negative enthalpy, indicating that the interaction of SPA and Mal-mPEG5000 was induced by the van der Waals force and hydrogen bonding. The UV results showed the formation of non-luminescent material during the interaction, the Fluorescence results confirmed that the mechanism between SPA and Mal-mPEG5000 was static quenching. According to the fluorescence quenching measurement, the binding constant (KA) values were 4.65 × 104 L·mol-1 (298K), 5.56 × 104 L·mol-1 (308K), and 6.91 × 104 L·mol-1 (318K), respectively.
Collapse
Affiliation(s)
- Xinhong Liang
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Yaxin Kong
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Huadi Sun
- Xinxiang Institute of Engineering, School of Food Engineering, Xinxiang 453003, China
| | - Ruixiang Zhao
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Lingxia Jiao
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Wanli Zhang
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Bing Liu
- Xinxiang Institute of Engineering, School of Food Engineering, Xinxiang 453003, China
| |
Collapse
|
5
|
Ji H, Bai Y, Liu Y, Wang Y, Zhan X, Long J, Chen L, Qiu C, Jin Z. Deciphering external chain length and cyclodextrin production with starch catalyzed by cyclodextrin glycosyltransferase. Carbohydr Polym 2022; 284:119156. [DOI: 10.1016/j.carbpol.2022.119156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/31/2021] [Accepted: 01/16/2022] [Indexed: 01/14/2023]
|
6
|
Farhadian S, Hashemi-Shahraki F, Amirifar S, Asadpour S, Shareghi B, Heidari E, Shakerian B, Rafatifard M, Firooz AR. Malachite Green, the hazardous materials that can bind to Apo-transferrin and change the iron transfer. Int J Biol Macromol 2022; 194:790-799. [PMID: 34838577 DOI: 10.1016/j.ijbiomac.2021.11.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023]
Abstract
Different groups of synthetic dyes might lead to environmental pollution. The binding affinity among hazardous materials with biomolecules necessitates a detailed understanding of their binding properties. Malachite Green might induce a change in the iron transfer by Apo-transferrin. Spectroscopic studies showed malachite green oxalate (MGO) could form the apo-transferrin-MGO complex and change the Accessible Surface Area (ASA) of the key amino acids for iron transfer. According to the ASA results the accessible surface area of Tyrosine, Aspartate, and Histidine of apo-transferrin significantly were changed, which can be considered as a convincing reason for changing the iron transfer. Moreover, based on the fluorescence data MGO could quench the fluorescence intensity of apo-transferrin in a static quenching mechanism. The experimental and Molecular Dynamic simulation results represented that the binding process led to micro environmental changes, around tryptophan residues and altered the tertiary structure of apo-transferrin. The Circular Dichroism (CD) spectra result represented a decrease in the amount of the α-Helix, as well as, increase in the β-sheet volumes of the apo-transferrin structure. Moreover, FTIR spectroscopy results showed a hypochromic shift in the peaks of amide I and II. Molecular docking and MD simulation confirmed all the computational findings.
Collapse
Affiliation(s)
- Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sogand Amirifar
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Ehsan Heidari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Behnam Shakerian
- Cardiovascular Diseases Research Department, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rafatifard
- Exercise Science/Physiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Reza Firooz
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
Belica-Pacha S, Daśko M, Buko V, Zavodnik I, Miłowska K, Bryszewska M. Thermodynamic Studies of Interactions between Sertraline Hydrochloride and Randomly Methylated β-Cyclodextrin Molecules Supported by Circular Dichroism Spectroscopy and Molecular Docking Results. Int J Mol Sci 2021; 22:12357. [PMID: 34830239 PMCID: PMC8620473 DOI: 10.3390/ijms222212357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/20/2022] Open
Abstract
The interaction between sertraline hydrochloride (SRT) and randomly methylated β-cyclodextrin (RMβCD) molecules have been investigated at 298.15 K under atmospheric pressure. The method used-Isothermal Titration Calorimetry (ITC) enabled to determine values of the thermodynamic functions like the enthalpy (ΔH), the entropy (ΔS) and the Gibbs free energy (ΔG) of binding for the examined system. Moreover, the stoichiometry coefficient of binding (n) and binding/association constant (K) value have been calculated from the experimental results. The obtained outcome was compared with the data from the literature for other non-ionic βCD derivatives interacting with SRT and the enthalpy-entropy compensation were observed and interpreted. Furthermore, the connection of RMβCD with SRT was characterized by circular dichroism spectroscopy (CD) and complexes of βCD derivatives with SRT were characterized through the computational studies with the use of molecular docking (MD).
Collapse
Affiliation(s)
- Sylwia Belica-Pacha
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Vyacheslav Buko
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, BLK-50, 230030 Grodno, Belarus; (V.B.); (I.Z.)
- Department of Biotechnology, School of Medical Sciences, Krakowska 9, 15-875 Bialystok, Poland
| | - Ilya Zavodnik
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, BLK-50, 230030 Grodno, Belarus; (V.B.); (I.Z.)
- Department of Biochemistry, Yanka Kupala Grodno State University, BLK-50, 230030 Grodno, Belarus
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|