1
|
Xu R, Liu M, Yao C, Xu X. Fabrication of Compartmentalized Multienzyme Reactor for Colorimetric Biosensing of Glucose and Phenol with High Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5401-5409. [PMID: 39794897 DOI: 10.1021/acsami.4c21031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Enzymatic cascade reactions are widely utilized in food security, environmental monitoring, and disease diagnostics, whereas their practical application was hindered due to their limited catalytic efficiency and intrinsic fragility to environmental influences. Herein, a compartmentalized dual-enzyme cascade nanoreactor was constructed in metal-organic frameworks (ZIF-8) by a shell-by-shell growth method. ZIF-8 provided a good microenvironment to maintain the activity of enzymes and protected them against harsh conditions. Importantly, experimental results revealed that the encapsulation order and enzyme ratio affected the cascade catalytic activity. When the cascade enzyme ratio was 1:1 and horseradish peroxidase (HRP) was encapsulated in the inner layer with glucose oxidase (GOx) in the outer layer (H@ZIF-8@G@ZIF-8), the nanoreactor facilitated the mass transfer process of substrates and showed the highest cascade catalytic efficiency. The maximum reaction rate (Vmax) of H@ZIF-8@G@ZIF-8 was 294.96 nM s-1, which was 1.6 times greater than G@ZIF-8@H@ZIF-8 (182.84 nM s-1). Therefore, H@ZIF-8@G@ZIF-8 was effectively applied in glucose monitoring and phenol sensing. The glucose biosensor showed a low detection limit of 0.76 μM and a broad linear range of 5-300 μM. The phenol biosensor demonstrated a wide linear range (20-300 μM) with a detection limit of 0.60 μM. In addition, the spiked recovery experiments for glucose and phenol were carried out in serum (recovery: 95.26-100.04%) and tap water (recovery: 97.05-106.50%), respectively. The high accuracy demonstrated potential applications of the cascade system in biosensing and environmental detection.
Collapse
Affiliation(s)
- Rentao Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Mengmeng Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xuan Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Akhtar H, Amara U, Mahmood K, Hanif M, Khalid M, Qadir S, Peng Q, Safdar M, Amjad M, Saif MZ, Tahir A, Yaqub M, Khalid K. Drug carrier wonders: Synthetic strategies of zeolitic imidazolates frameworks (ZIFs) and their applications in drug delivery and anti-cancer activity. Adv Colloid Interface Sci 2024; 329:103184. [PMID: 38781826 DOI: 10.1016/j.cis.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
With the rapid advancement of nanotechnology, stimuli-responsive nanomaterials have emerged as a feasible choice for the designing of controlled drug delivery systems. Zeolitic imidazolates frameworks are a subclass of Metal-organic frameworks (MOFs) that are recognized by their excellent porosity, structural tunability and chemical modifications make them promising materials for loading targeted molecules and therapeutics agents. The biomedical industry uses these porous materials extensively as nano-carriers in drug delivery systems. These MOFs not only possess excellent targeted imaging ability but also cause the death of tumor cells drawing considerable attention in the current framework of anticancer drug delivery systems. In this review, the outline of stability, porosity, mechanism of encapsulation and release of anticancer drug have been reported extensively. In the end, we also discuss a brief outline of current challenges and future perspectives of ZIFs in the biomedical world.
Collapse
Affiliation(s)
- Hamza Akhtar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Umay Amara
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, China.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Hanif
- Department of Pharmaceutics, faculty of Pharmacy, Bahauddin Zakariya University, Multan 608000, Pakistan.
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sobia Qadir
- Department of Physics, Govt. Graduate College of Science Multan, 6FFJ+55F, Bosan Rd, Multan, Pakistan
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Safdar
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Amjad
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Zubair Saif
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aniqa Tahir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Kiran Khalid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
3
|
Wang Q, Xiong J, Xu H, Sun W, Pan X, Cui S, Lv S, Zhang Y. Enhanced Enzymatic Performance of Immobilized Pseudomonas fluorescens Lipase on ZIF-8@ZIF-67 and Its Application to the Synthesis of Neryl Acetate with Transesterification Reaction. Molecules 2024; 29:2922. [PMID: 38930986 PMCID: PMC11207022 DOI: 10.3390/molecules29122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, hybrid skeleton material ZIF-8@ZIF-67 was synthesized by the epitaxial growth method and then was utilized as a carrier for encapsulating Pseudomonas fluorescens lipase (PFL) through the co-precipitation method, resulting in the preparation of immobilized lipase (PFL@ZIF-8@ZIF-67). Subsequently, it was further treated with glutaraldehyde to improve protein immobilization yield. Under optimal immobilization conditions, the specific hydrolytic activity of PFL@ZIF-8@ZIF-67 was 20.4 times higher than that of the free PFL. The prepared biocatalyst was characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). Additionally, the thermal stability of PFL@ZIF-8@ZIF-67 at 50 °C was significantly improved compared to the free PFL. After 7 weeks at room temperature, PFL@ZIF-8@ZIF-67 retained 78% of the transesterification activity, while the free enzyme was only 29%. Finally, PFL@ZIF-8@ZIF-67 was applied to the neryl acetate preparation in a solvent-free system, and the yield of neryl acetate reached 99% after 3 h of reaction. After 10 repetitions, the yields of neryl acetate catalyzed by PFL@ZIF-8@ZIF-67 and the free PFL were 80% and 43%, respectively.
Collapse
Affiliation(s)
| | - Jian Xiong
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Yildirim A, Ascioglu S, Kocer MB, Ozyilmaz E, Yilmaz M. Design of a novel fluorescent metal-organic framework (UiO-66-NG) for the detection of boric acid in aqueous medium and bioimaging in a living plant system. Talanta 2024; 268:125285. [PMID: 37832455 DOI: 10.1016/j.talanta.2023.125285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
UiO-66-NH2 material is a variant of Zr-based MOF most widely used for various applications, exhibiting unprecedented excellent hydrothermal and physicochemical stability. In this study, after UiO-66-NH2 reacted with chlorosulfonyl isocyanate, the fluorescent UiO-66-NG probe was prepared by interacting with the N-methylglucamine molecule. The structure of the prepared probe was confirmed by characterizing them with techniques such as FTIR, SEM, and XRD. The sensing properties of this prepared probe against different anions and cations were investigated and it was understood that it showed sensitive selectivity only for H3BO3. The H3BO3 detection limit (LOD) of the UiO-66-NG probe was determined as 1.81 μM. Boric acid was determined in real samples by using tap water, lake water, and river water. Fluorescence imaging was performed using the plant Lepidium sativum for the detection of boric acid in aqueous medium and for bio-imaging in a living plant system. These results show that the prepared UiO-66-NG can be used successfully in the determination of H3BO3 in living plants.
Collapse
Affiliation(s)
- Ayse Yildirim
- Selcuk University, Department of Chemistry, 42075, Konya, Turkey.
| | - Sebahat Ascioglu
- Selcuk University, Department of Biochemistry, 42075, Konya, Turkey
| | | | - Elif Ozyilmaz
- Selcuk University, Department of Biochemistry, 42075, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Department of Chemistry, 42075, Konya, Turkey.
| |
Collapse
|
5
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
6
|
Fan X, Zhang P, Fan M, Jiang P, Leng Y. Immobilized lipase for sustainable hydrolysis of acidified oil to produce fatty acid. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02891-4. [PMID: 37329348 DOI: 10.1007/s00449-023-02891-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Acidified oil is obtained from by-product of crops oil refining industry, which is considered as a low-cost material for fatty acid production. Hydrolysis of acidified oil by lipase catalysis for producing fatty acid is a sustainable and efficient bioprocess that is an alternative of continuous countercurrent hydrolysis. In this study, lipase from Candida rugosa (CRL) was immobilized on magnetic Fe3O4@SiO2 via covalent binding strategy for highly efficient hydrolysis of acidified soybean oil. FTIR, XRD, SEM and VSM were used to characterize the immobilized lipase (Fe3O4@SiO2-CRL). The enzyme properties of the Fe3O4@SiO2-CRL were determined. Fe3O4@SiO2-CRL was used to catalyze the hydrolysis of acidified soybean oil to produce fatty acids. Catalytic reaction conditions were studied, including amount of catalyst, reaction time, and water/oil ratio. The results of optimization indicated that the hydrolysis rate reached 98% under 10 wt.% (oil) of catalyst, 3:1 (v/v) of water/oil ratio, and 313 K after 12 h. After 5 cycles, the hydrolysis activity of Fe3O4@SiO2-CRL remained 55%. Preparation of fatty acids from high-acid-value by-products through biosystem shows great industrial potential.
Collapse
Affiliation(s)
- Xiulin Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Pingbo Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Mingming Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Pingping Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Leng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
7
|
Ozyilmaz E, Kocer MB, Caglar O, Yildirim A, Yilmaz M. Surfactant-based metal-organic frameworks (MOFs) in the preparation of an active biocatalysis. J Biotechnol 2023:S0168-1656(23)00116-5. [PMID: 37301292 DOI: 10.1016/j.jbiotec.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) are used as ideal support materials thanks to their unique properties and have become the focus of interest in enzyme immobilization studies, especially in recent years. In order to increase the catalytic activity and stability of Candida rugosa lipase (CRL), a new fluorescence-based MOF (UiO-66-Nap) derived from UiO-66 was synthesized. The structures of the materials were confirmed by spectroscopic techniques such as FTIR, 1H NMR, SEM, and PXRD. CRL was immobilized on UiO-66-NH2 and UiO-66-Nap by adsorption technique and immobilization and stability parameters of UiO-66-Nap@CRL were examined. Immobilized lipases UiO-66-Nap@CRL exhibited higher catalytic activity (204 U/g) than UiO-66-NH2@CRL (168 U/g), which indicates that the immobilized lipase (UiO-66-Nap@CRL) carries sulfonate groups, this is due to strong ionic interactions between the surfactant's polar groups and certain charged locations on the protein surface. The Free CRL lost its catalytic activity completely at 60 °C after 100min, while UiO-66-NH2@CRL and UiO-66-Nap@CRL retained 45% and 56% of their catalytic activity at the end of 120min, respectively. After 5 cycles, the activity of UiO-66-Nap@CRL remained 50%, while the activity of UiO-66-NH2@CRL was about 40%. This difference is due to the surfactant groups (Nap) in UiO-66-Nap@CRL. These results show that the newly synthesized fluorescence-based MOF derivative (UiO-66-Nap) can be an ideal support material for enzyme immobilization and can be used successfully to protect and increase the activities of enzymes.
Collapse
Affiliation(s)
- Elif Ozyilmaz
- Selcuk University, Faculty of Science, Department of Biochemistry, Konya, Turkey.
| | - Mustafa Baris Kocer
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Ozge Caglar
- Selcuk University, Faculty of Science, Department of Biochemistry, Konya, Turkey; Selcuk University, Institute of Sciences, Konya, Turkey
| | - Ayse Yildirim
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey; Selcuk University, Institute of Sciences, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| |
Collapse
|
8
|
Kayhan EY, Yildirim A, Kocer MB, Uysal A, Yilmaz M. A cellulose-based material as a fluorescent sensor for Cr(VI) detection and investigation of antimicrobial properties of its encapsulated form in two different MOFs. Int J Biol Macromol 2023; 240:124426. [PMID: 37060971 DOI: 10.1016/j.ijbiomac.2023.124426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
It is crucial to detect toxic chromium ions quickly, reliably, sensitively and at low concentrations. In recent years, fluorescence-based methods have been developed for the rapid detection and determination of toxic ions such as chromium. In present work, we focused on the development of a cellulose-based fluorescent probe (Cel-Nap) for the determination of Cr(VI). The fluorescent probe bearing the 1,8-naphthalimide group displayed a low LOD of 1.07 μM for Cr(VI) in the working range of 0.33 × 10-5-3.22 × 10-5 M. The fluorescence and antibacterial properties of UiO-66-Cel-Nap and ZIF-8-Cel-Nap materials prepared by encapsulating Cel-Nap with 2 different MOF types (UiO-66 and ZIF-8) were investigated. While it was found that ZIF-8-based materials had better antimicrobial properties compared to those of UiO-66, it was determined that materials containing Ag+ were more effective against microbial than those containing AgNPs. It was found that the most effective material was ZIF-8-Cel-Nap-Ag+ and it had a significant antibacterial effect against E. coli at a MIC value of 0.0024 mg/mL.
Collapse
Affiliation(s)
| | - Ayse Yildirim
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Mustafa Baris Kocer
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Ahmet Uysal
- Selcuk University, Vocational School of Health Services, Department of Medical Services and Techniques, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey.
| |
Collapse
|
9
|
Kikani B, Patel R, Thumar J, Bhatt H, Rathore DS, Koladiya GA, Singh SP. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int J Biol Macromol 2023; 238:124051. [PMID: 36933597 DOI: 10.1016/j.ijbiomac.2023.124051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Non-aqueous enzymology has always drawn attention due to the wide range of unique possibilities in biocatalysis. In general, the enzymes do not or insignificantly catalyze substrate in the presence of solvents. This is due to the interfering interactions of the solvents between enzyme and water molecules at the interface. Therefore, information about solvent-stable enzymes is scarce. Yet, solvent-stable enzymes prove quite valuable in the present day biotechnology. The enzymatic hydrolysis of the substrates in solvents synthesizes commercially valuable products, such as peptides, esters, and other transesterification products. Extremophiles, the most valuable yet not extensively explored candidates, can be an excellent source to investigate this avenue. Due to inherent structural attributes, many extremozymes can catalyze and maintain stability in organic solvents. In the present review, we aim to consolidate information about the solvent-stable enzymes from various extremophilic microorganisms. Further, it would be interesting to learn about the mechanism adapted by these microorganisms to sustain solvent stress. Various approaches to protein engineering are used to enhance catalytic flexibility and stability and broaden biocatalysis's prospects under non-aqueous conditions. It also describes strategies to achieve optimal immobilization with minimum inhibition of the catalysis. The proposed review would significantly aid our understanding of non-aqueous enzymology.
Collapse
Affiliation(s)
- Bhavtosh Kikani
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388 421, Gujarat, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395 007, Gujarat, India
| | - Jignasha Thumar
- Government Science College, Gandhinagar 382 016, Gujarat, India
| | - Hitarth Bhatt
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Microbiology, Faculty of Science, Atmiya University, Rajkot 360005, Gujarat, India
| | - Dalip Singh Rathore
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Gujarat Biotechnology Research Centre, Gandhinagar 382 010, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
10
|
Luo M, Wang L, Chen G, Zhao J. Performance of Microenvironment-induced Lipase Immobilization on diversify Surface of Magnetic Particle. Colloids Surf B Biointerfaces 2023; 225:113286. [PMID: 37004389 DOI: 10.1016/j.colsurfb.2023.113286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The orientation of the enzyme molecular on the interface of the carrier affects its activity. Therefore, it is very important to controllably induce the orientation of the enzyme on the surface to improve the performance of the immobilized enzyme. Magnetic nanoparticles were used to construct microenvironments with the different surface hydrophobicity and charge characteristics by controlled modification, and those particles with various microenvironments were further used to study their interaction with the lipase. The amount and activity of immobilized enzyme on different magnetic nanoparticles surfaces were studied by physical adsorption and covalent binding. Through the enzyme surface and particle surface characteristics analysis, the possible preferred orientation of enzyme and enzyme conformation on different surfaces were inferred, which well explained the effect of surface induction on enzyme loading and activity. The methods of surface microenvironment regulation and the strategy of controllable induction of enzyme orientation adopted in this study are enlightening for the rational design of immobilized enzyme methods.
Collapse
Affiliation(s)
- Mianxing Luo
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| | - Liang Wang
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| | - Guo Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China.
| | - Jun Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| |
Collapse
|
11
|
Zhong LJ, Jiang B, Tang K. Efficient resolution of 4-chlormandelic acid enantiomers using lipase@UiO-67(Zr) zirconium-organic frameworks in organic solvent. Chirality 2023; 35:323-333. [PMID: 36739869 DOI: 10.1002/chir.23542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
A new biocatalyst PCL@UiO-67(Zr) was successfully synthesized by immobilized lipases on metal-organic frameworks (MOFs) materials. Compare with free lipases, zirconium foundation organic framework material UiO-67(Zr) modification on immobilized lipases Pseudomonas cepacia lipase (PCL) great boosts their enantioselectivity in the kinetic resolution racemic 4-chloro-mandelic acid (4-ClMA) on the organic solvent. The acquired bio-composite PCL@UiO-67(Zr) was fully characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption-desorption isotherm and aperture distribution map, and scanning electron microscopy (SEM). The catalytic performance of PCL@UiO-67(Zr), such as temperature, reaction time, and lipase quantity, were deeply explored. The experiment results showed resolution racemic 4-ClMA optimum conditions that 20 mmol/L of (R, S)-4-chloromandelic acid, 120 mmol/L vinyl acetate, 30-mg immobilized lipases PCL@UiO-67(Zr), 2 mL of MTBE, 500 rpm, and under the 55°C reaction 18 h. In this optimum conditions, c and eep could reach up to 47.6% and 98.7%, respectively.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Bihui Jiang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| |
Collapse
|
12
|
Isaeva VI, Timofeeva MN, Lukoyanov IA, Gerasimov EY, Panchenko VN, Chernyshev VV, Glukhov LM, Kustov LM. Novel MOF catalysts based on calix[4]arene for the synthesis of propylene carbonate from propylene oxide and CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Hu R, Niu Z, Lu Y, Zhu H, Mao Z, Yan K, Hu X, Chen H. Immobilization for Lipase: Enhanced Activity and Stability by Flexible Combination and Solid Support. Appl Biochem Biotechnol 2022; 194:5963-5976. [DOI: 10.1007/s12010-022-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
|
14
|
Thermal pyrolysis and kinetic analysis of a ZnxCo1−x ZiF-8 metal–organic framework for recent applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Gharehkhani A, Ghorbani-Vaghei R, Alavinia S. Synthesis of calixresorcarenes using magnetic poly triazine-benzene sulfonamide-SO 3H. RSC Adv 2021; 11:37514-37527. [PMID: 35496418 PMCID: PMC9043749 DOI: 10.1039/d1ra07393a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
The purpose of this work is to develop a magnetically recyclable immobilized base catalyst for the green synthesis of calixresorcarenes. To achieve this, poly triazine-benzene sulfonamide (PTBSA) has been coated on magnetic Fe3O4 nanoparticles and subsequently chlorosulfonic acid has been supported to obtain Fe3O4@PTBSA-SO3H. The structure of nano-Fe3O4@PTBSA-SO3H was characterized by TEM, XRD, FT-IR, VSM, WDX, EDX, TGA/DSC and FE-SEM. The catalytic efficiency of this catalyst was also investigated in the synthesis of novel calixresorcarene derivatives. The advantages of heterogeneous nature, catalytic activity and the recyclability of the polymer support were also strengthened by advanced surface treatment. These key factors (basic sites, acidic sites and heterogeneity) play essential roles in the catalyst performance. This procedure has some advantages such as short reaction time, clean and fast work-up and easy separation of the catalyst by an external magnet. Magnetic poly triazine-benzene sulfonamide-SO3H was investigated for the synthesis of calixresorcarenes.![]()
Collapse
Affiliation(s)
- Alireza Gharehkhani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Zip Code 65174 Hamedan Iran +98 81 38380647
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Zip Code 65174 Hamedan Iran +98 81 38380647
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Zip Code 65174 Hamedan Iran +98 81 38380647
| |
Collapse
|
16
|
Ozyilmaz E, Ascioglu S, Yilmaz M. Preparation of One‐Pot Immobilized Lipase with Fe
3
O
4
Nanoparticles Into Metal‐Organic Framework For Enantioselective Hydrolysis of (
R,S
)‐Naproxen Methyl Ester. ChemCatChem 2021. [DOI: 10.1002/cctc.202100481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elif Ozyilmaz
- Department of Biochemistry Selcuk University 42075 Konya Turkey
| | | | - Mustafa Yilmaz
- Department of Chemistry Selcuk University 42075 Konya Turkey
| |
Collapse
|