1
|
Bairwan RD, Sukeksi L, Khalil HPSA, Hosny KM, Baradwan M, Rizg WY, Alsenani F, Ahmad A, Surya I. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microfilled anhydride-modified crude lignin blend biodegradable materials. Int J Biol Macromol 2025; 304:140985. [PMID: 39952528 DOI: 10.1016/j.ijbiomac.2025.140985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
This study explores the potential of crude lignin, extracted from coir fibers, an agricultural byproduct, as a sustainable filler in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biodegradable blends. To enhance compatibility with the PHBV matrix, lignin was chemically modified using acetic anhydride (AL) and propionic anhydride (PL). These modifications were confirmed through FTIR, XRD, FE-SEM, EDX, and TGA analyses. The blends were prepared via melt compounding in a twin-screw extruder, followed by compression molding, with lignin microfillers incorporated at 1, 3, 5, and 7 wt% of dried PHBV. The addition of modified lignins improved the physical, mechanical, and thermal properties of the blends, with the optimal performance observed at 5 wt%, attributed to enhanced interfacial bonding. Two-way ANOVA with Tukey tests (p ≤ 0.05) confirmed statistical significance. However, at 7 wt%, all blends exhibited reduced performance due to lignin agglomeration, confirmed by morphology and tensile tests. Both modifications provided desirable multi-functional properties, but propionylated lignin-based blends outperformed those with acetylated and raw lignins, due to more effective substitution of non-polar groups, which improved filler-matrix miscibility. Fracture surface analysis, topography, and thermal evaluations validated these observations. These findings highlight chemically modified lignins, as effective, sustainable fillers for eco-friendly biopolymer composites suitable for packaging applications.
Collapse
Affiliation(s)
- Rahul Dev Bairwan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Lilis Sukeksi
- Chemical Engineering Department, Universitas Sumatera Utara, Medan 20155, Indonesia.
| | - H P S Abdul Khalil
- Faculty of Business, Hospitality and Technology, Universiti Islam Melaka, Melaka 78200, Malaysia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Baradwan
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal Alsenani
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Azfaralariff Ahmad
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Indra Surya
- Chemical Engineering Department, Universitas Sumatera Utara, Medan 20155, Indonesia
| |
Collapse
|
2
|
Creteanu A, Lungu CN, Lungu M. Lignin: An Adaptable Biodegradable Polymer Used in Different Formulation Processes. Pharmaceuticals (Basel) 2024; 17:1406. [PMID: 39459044 PMCID: PMC11509946 DOI: 10.3390/ph17101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION LIG is a biopolymer found in vascular plant cell walls that is created by networks of hydroxylated and methoxylated phenylpropane that are randomly crosslinked. Plant cell walls contain LIG, a biopolymer with significant potential for usage in modern industrial and pharmaceutical applications. It is a renewable raw resource. The plant is mechanically protected by this substance, which may increase its durability. Because it has antibacterial and antioxidant qualities, LIG also shields plants from biological and chemical challenges from the outside world. Researchers have done a great deal of work to create new materials and substances based on LIG. Numerous applications, including those involving antibacterial agents, antioxidant additives, UV protection agents, hydrogel-forming molecules, nanoparticles, and solid dosage forms, have been made with this biopolymer. METHODS For this review, a consistent literature screening using the Pubmed database from 2019-2024 has been performed. RESULTS The results showed that there is an increase in interest in lignin as an adaptable biomolecule. The most recent studies are focused on the biosynthesis and antimicrobial properties of lignin-derived molecules. Also, the use of lignin in conjunction with nanostructures is actively explored. CONCLUSIONS Overall, lignin is a versatile molecule with multiple uses in industry and medical science.
Collapse
Affiliation(s)
- Andreea Creteanu
- Department of Pharmaceutical Technology, University of Medicine and Pharmacy Grigore T Popa, 700115 Iași, Romania;
| | - Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| | - Mirela Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| |
Collapse
|
3
|
Baniasadi H, Madani Z, Mohan M, Vaara M, Lipponen S, Vapaavuori J, Seppälä JV. Heat-Induced Actuator Fibers: Starch-Containing Biopolyamide Composites for Functional Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48584-48600. [PMID: 37787649 PMCID: PMC10591286 DOI: 10.1021/acsami.3c08774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
This study introduces the development of a thermally responsive shape-morphing fabric using low-melting-point polyamide shape memory actuators. To facilitate the blending of biomaterials, we report the synthesis and characterization of a biopolyamide with a relatively low melting point. Additionally, we present a straightforward and solvent-free method for the compatibilization of starch particles with the synthesized biopolyamide, aiming to enhance the sustainability of polyamide and customize the actuation temperature. Subsequently, homogeneous dispersion of up to 70 wt % compatibilized starch particles into the matrix is achieved. The resulting composites exhibit excellent mechanical properties comparable to those reported for soft and tough materials, making them well suited for textile integration. Furthermore, cyclic thermomechanical tests were conducted to evaluate the shape memory and shape recovery of both plain polyamide and composites. The results confirmed their remarkable shape recovery properties. To demonstrate the potential application of biocomposites in textiles, a heat-responsive fabric was created using thermoresponsive shape memory polymer actuators composed of a biocomposite containing 50 wt % compatibilized starch. This fabric demonstrates the ability to repeatedly undergo significant heat-induced deformations by opening and closing pores, thereby exposing hidden functionalities through heat stimulation. This innovative approach provides a convenient pathway for designing heat-responsive textiles, adding value to state-of-the-art smart textiles.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Zahra Madani
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Mithila Mohan
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Maija Vaara
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Sami Lipponen
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jaana Vapaavuori
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jukka V. Seppälä
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
4
|
Delatorre FM, Cupertino GFM, Pereira AKS, de Souza EC, da Silva ÁM, Ucella Filho JGM, Saloni D, Profeti LPR, Profeti D, Dias Júnior AF. Photoluminous Response of Biocomposites Produced with Charcoal. Polymers (Basel) 2023; 15:3788. [PMID: 37765642 PMCID: PMC10536408 DOI: 10.3390/polym15183788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the possible effects of global warming, new materials that do not have a negative impact on the environment are being studied. To serve a variety of industries and outdoor applications, it is necessary to consider the impact of photoluminosity on the performance of biocomposites in order to accurately assess their durability characteristics and prevent substantial damage. Exposure to photoluminosity can result in adverse effects such as discoloration, uneven surface, loss of mass, and manipulation of the intrinsic mechanical properties of biocomposites. This study aims to evaluate general charcoal from three pyrolysis temperatures to understand which charcoal is most suitable for photoluminosity and whether higher pyrolysis temperatures have any significant effect on photoluminosity. Porosity, morphology, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy of charcoal were analyzed. Charcoal obtained at a temperature of 800 °C demonstrates remarkable potential as a bioreinforcement in polymeric matrices, attributable to its significantly higher porosity (81.08%) and hydrophobic properties. The biocomposites were characterized for flexural strength, tensile strength, scanning electron microscopy (SEM), FTIR, and x-ray diffraction (XRD). The results showed an improvement in tensile strength after exposure to photoluminosity, with an increase of 69.24%, 68.98%, and 54.38% at temperatures of 400, 600, and 800 °C, respectively, in relation to the treatment control. It is notorious that the tensile strength and modulus of elasticity after photoluminosity initially had a negative impact on mechanical strength, the incorporation of charcoal from higher pyrolysis temperatures showed a substantial increase in mechanical strength after exposure to photoluminosity, especially at 800 °C with breaking strength of 53.40 MPa, and modulus of elasticity of 4364.30 MPA. Scanning electron microscopy revealed an improvement in morphology, with a decrease in roughness at 800 °C, which led to greater adhesion to the polyester matrix. These findings indicate promising prospects for a new type of biocomposite, particularly in comparison with other polymeric compounds, especially in engineering applications that are subject to direct interactions with the weather.
Collapse
Affiliation(s)
- Fabíola Martins Delatorre
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil
| | - Gabriela Fontes Mayrinck Cupertino
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil
| | - Allana Katiussya Silva Pereira
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil
| | - Elias Costa de Souza
- Institute of Xingu Studies, Federal University of South and Southeast Pará (UNIFESSPA), Subdivision Cidade nova, QD 15, Sector 15, São Félix do Xingu 68380-000, PA, Brazil
| | - Álison Moreira da Silva
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil
| | - João Gilberto Meza Ucella Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil
| | - Daniel Saloni
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Demetrius Profeti
- Department of Chemistry and Physics, Federal University of Espírito Santo (UFES), Alegre 29500-000, ES, Brazil
| | - Ananias Francisco Dias Júnior
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil
| |
Collapse
|
5
|
Ding T, Liu R, Yan X, Zhang Z, Xiong F, Li X, Wu Z. An electrochemically mediated ATRP synthesis of lignin-g-PDMAPS UCST-thermoresponsive polymer. Int J Biol Macromol 2023; 241:124458. [PMID: 37076067 DOI: 10.1016/j.ijbiomac.2023.124458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
It is a promising idea to graft zwitterionic polymers onto lignin and prepare lignin-grafted-poly [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (Lignin-g-PDMAPS) thermosensitive polymer with the upper critical solution temperature (UCST). In this paper, an electrochemically mediated atom transfer radical polymerization (eATRP) method was used to prepare Lignin-g-PDMAPS. The structure and property of the Lignin-g-PDMAPS polymer were characterized by the fourier transform infrared spectrum (FT-IR), nuclear magnetic resonance (NMR), X-ray electron spectroscopy (XPS), dynamic light scattering (DLS), differential scanning calorimeter (DSC). Furthermore, the effect of catalyst structure, applied potential, amount of Lignin-Br, Lignin-g-PDMAPS concentration, NaCl concentration on UCST of Lignin-g-PDMAPS were investigated. It was worth noting that polymerization was well controlled when the ligand was tris (2-aminoethyl) amine (Me6TREN), applied potential was -0.38 V and the amount of Lignin-Br was 100 mg. And the UCST of the Lignin-g-PDMAPS aqueous solution (1 mg/ml) was 51.47 °C, the molecular weight was 8987 g/mol, and the particle size was 318 nm. It was also found that the UCST increased and the particle size decreased with the Lignin-g-PDMAPS polymer concentration increased, and the UCST decreased and the particle size increased with the NaCl concentration increases. This work investigated UCST-thermoresponsive polymer which possessed lignin main chain combining the zwitterionic side chain, and provided a new way for development of lignin based UCST-thermoresponsive materials and medical carrier materials, in addition to expand the scope of eATRP.
Collapse
Affiliation(s)
- Tingting Ding
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ruixia Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaofan Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuoyu Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Borah N, Karak N. Green composites of bio-based epoxy and waste tea fiber as environmentally friendly structural materials. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2177171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Nobomi Borah
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napam, Tezpur, Assam, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napam, Tezpur, Assam, India
| |
Collapse
|
7
|
The Accelerated Aging Impact on Mechanical and Thermal Properties of Polypropylene Composites with Sedimentary Rock Opoka-Hybrid Natural Filler. MATERIALS 2022; 15:ma15010338. [PMID: 35009483 PMCID: PMC8745994 DOI: 10.3390/ma15010338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022]
Abstract
This paper presents the impact of accelerated aging on selected mechanical and thermal properties of isotactic polypropylene (iPP) composites filled with sedimentary hybrid natural filler-Opoka rock. The filler was used in two forms: an industrial raw material originating as a subsieve fraction natural material, and a rock calcinated at 1000 °C for production of phosphorous sorbents. Fillers were incorporated with constant amount of 5 wt % of the resulting composite, and the material was subjected to accelerated weathering tests with different exposition times. The neat polypropylene and composites with calcium carbonate as a reference filler material were used for comparison. The aim of the research was to determine the possibility of using the Opoka rock as a new hybrid filler for polypropylene, which could be an alternative to the widely used calcium carbonate and silica. The thermal, mechanical, and structural properties were evaluated by means of differential scanning calorimetry (DSC), tensile tests, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR/ATR) prior to and after accelerated aging. As a result, it was found that the composites of polypropylene with Opoka were characterized by similar or higher functional properties and higher resistance to photodegradation compared to composites with conventional calcium carbonate. The results of measurements of mechanical properties, structural and surface changes, and the carbonyl index as a function of accelerated aging proved that Opoka was an effective ultraviolet (UV) stabilizer, significantly exceeding the reference calcium carbonate in this respect. The new hybrid filler of natural origin in the form of Opoka can therefore be used not only as a typical powder filler, but above all as a UV blocker/stabilizer, thus extending the life of polypropylene composites, especially for outdoor applications.
Collapse
|
8
|
Liu R, Ding T, Deng P, Yan X, Xiong F, Chen J, Wu Z. Preparation of LCST regulable DES-lignin-g-PNVCL thermo-responsive polymer by ARGET-ATRP. Int J Biol Macromol 2022; 194:358-365. [PMID: 34800520 DOI: 10.1016/j.ijbiomac.2021.11.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022]
Abstract
To expand the field of high-value utilization of lignin. The degraded deep eutectic solvent lignin-grafted poly (N-Vinyl caprolactam) (DES-lignin-g-PNVCL) was synthesized by modified DES-lignin and NVCL via the combination of activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP). Fourier transform infrared spectroscopy (FT-IR), 1H NMR, X-ray electron spectroscopy (XPS), dynamic light scattering (DLS), differential scanning calorimeter (DSC) were used to characterize the structure and performance of DES-lignin-g-PNVCL. The results indicated that the PNVCL and DES-lignin-g-PNVCL were successfully prepared by ARGET-ATRP. The lowest critical solution temperature (LCST) of PNVCL was 35.75 °C. Due to different strength of hydrogen bond, different energies were required, so the LCST of the polymer can be regulated. When the molar ratio of phenolic hydroxyl group in degraded DES-lignin to 2-bromoisobutyryl bromide (BiBB) was increased from 1:1 to 1:7, the grafting rate of DES-lignin-Br was increased from 32.87% to 60.84%, and the LCST of DES-lignin-g-PNVCL was decreased from 47.98 °C to 27.88 °C. The LCST of DES-lignin-g-PNVCL was increased from 30.98 °C to 44.64 °C when the addition amount of DES-lignin-Br was increased from 20 mg to 200 mg. The LCST of DES-lignin-g-PNVCL was increased from 27.20 °C to 39.86 °C when the ratio of DMF/water was increased from 1:4 to 4:1. The LCST of DES-lignin-g-PNVCL was decreased from 52.10 °C to 31.02 °C when the concentration of DES-lignin-g-PNVCL was increased from 0.5 mg/mL to 2.5 mg/mL. The equation represented the relationship between LCST and influencing factors was obtained, the good predictability provided a tactics for preparing desired LCST thermo-responsible polymer.
Collapse
Affiliation(s)
- Ruixia Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tingting Ding
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Pingping Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaofan Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jienan Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
Modification of the Properties of Polymer Composites in a Constant Magnetic Field Environment. MATERIALS 2021; 14:ma14143806. [PMID: 34300725 PMCID: PMC8303739 DOI: 10.3390/ma14143806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022]
Abstract
In this paper, polymer composites based on polylactide (PLA) and epoxy resin (Epidian 5) were studied in terms of the influence of magnetic induction on their changes in physicochemical properties. The composites contained admixtures in the form of magnetite (Fe3O4) and crystalline cellulose (Avicel PH-1010) in the amount of 10%, 20%, and 30% by weight and starch in the amount of 10%. The admixtures of cellulose and starch were intended to result in the composites becoming biodegradable biopolymers to some extent. Changes in physical and chemical properties due to the impact of a constant magnetic field with a magnetic induction value B = 0.5 T were observed. The changes were observed during tests of tensile strength, bending, impact strength, water absorbency, frost resistance, chemical resistance to acids and bases, as well as through SEM microscopy and with studies of the composition of the composites that use the EDS method and of their structure with the XRD method. Based on the obtained results, it was found that the magnetic induction value changes the properties of composites. This therefore acts as one method of receiving new alternative materials, the degradation of which in the environment would take far less time.
Collapse
|