1
|
Xu HX, Li XF, Zhao GL. Comparative Proteomic Analysis Reveals the Effect Mechanisms of Glucose on the Biomass and Phenolic Glycoside Esters Synthesis Activity of Candida Parapsilosis ACCC 20221 Whole-Cell Catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20140-20152. [PMID: 39198143 DOI: 10.1021/acs.jafc.4c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
A new Candida parapsilosis ACCC 20221 (C. parapsilosis ACCC 20221) whole-cell catalyst with a high phenolic glycoside esters synthesis activity and large biomass was obtained after culture with glucose. The possible mechanisms were revealed by using comparative proteomics. It found the expression of proteins involved in post-translational modification, protein turnover, and chaperone, and RNA processing and modification was upregulated, which ensured the metabolic balance and accurate translation, correct folding, and post-translational modification of proteins, thus enhancing the production of lipases in C. parapsilosis ACCC 20221 cultured with glucose. Moreover, the glycolysis pathway, tricarboxylic acid cycle, and fatty acids synthesis were enhanced, while the β-oxidation of fatty acids was weakened in C. parapsilosis ACCC 20221 cells cultured with glucose, which led to an increase in energy generation and cell membrane synthesis; thus, large biomass was obtained. In addition, CCE40476.1 and CAC86400.1, which were likely to exert arbutin esters synthesis activity in C. parapsilosis ACCC 20221, were screened, and it was found that vinyl propionate could easily enter the catalytic pocket of CCE40476.1 and form hydrogen bonding interactions with Leu191 and Ser266.
Collapse
Affiliation(s)
- Hai-Xia Xu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiao-Feng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Guang-Lei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA. Membrane fatty acid desaturase: biosynthesis, mechanism, and architecture. Appl Microbiol Biotechnol 2022; 106:5957-5972. [PMID: 36063178 DOI: 10.1007/s00253-022-12142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Fatty acid desaturase catalyzes the desaturation reactions by inserting double bonds into the fatty acyl chain, producing unsaturated fatty acids, which play a vital part in the synthesis of polyunsaturated fatty acids. Though soluble fatty acid desaturases have been described extensively in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to their difficulties in producing a sufficient amount of recombinant desaturases. However, the advancement of technology has shown substantial progress towards the development of elucidating crystal structures of membrane fatty acid desaturase, thus, allowing modification of structure to be manipulated. Understanding the structure, mechanism, and biosynthesis of fatty acid desaturase lay a foundation for the potential production of various strategies associated with alteration and modifications of polyunsaturated fatty acids. This manuscript presents the current state of knowledge and understanding about the structure, mechanisms, and biosynthesis of fatty acid desaturase. In addition, the role of unsaturated fatty acid desaturases in health and diseases is also encompassed. This will be useful in understanding the molecular basis and structural protein of fatty acid desaturase that are significant for the advancement of therapeutic strategies associated with the improvement of health status. KEY POINTS: • Current state of knowledge and understanding about the biosynthesis, mechanisms, and structure of fatty acid desaturase. • The role of unsaturated fatty acid desaturase. • The molecular basis and structural protein elucidated the crystal structure of fatty acid desaturase.
Collapse
Affiliation(s)
- Nur Farah Anis Abd Halim
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|