1
|
Musioł M, Rydz J, Janeczek H, Andrzejewski J, Cristea M, Musioł K, Kampik M, Kowalczuk M. (Bio)degradable Biochar Composites of PLA/P(3HB- co-4HB) Commercial Blend for Sustainable Future-Study on Degradation and Electrostatic Properties. Polymers (Basel) 2024; 16:2331. [PMID: 39204551 PMCID: PMC11359726 DOI: 10.3390/polym16162331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Interesting alternatives to expensive biodegradable polymers are their composites with natural fillers. The addition of biochar to a blend of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) was studied, and the resulting materials were evaluated for their properties and changes during degradation. Introducing biochar as a filler brought a noticeable improvement in electrostatic properties. Surface resistivity decreased from 3.80 × 1012 for the sample without biochar to 1.32 × 1012 for the sample with 30% filler content. Degradation tests revealed distinct differences in the degradation profile for composites due to the presence of filler. Composites with a lower biochar content displayed curling crack edges during hydrolytic degradation, and when the filler content reached 20 wt%, PLA loss accelerated. This study suggests that biochar-based composites have potential to be used as sustainable materials with improved properties.
Collapse
Affiliation(s)
- Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (J.R.); (H.J.); (M.K.)
- International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (J.R.); (H.J.); (M.K.)
- International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (J.R.); (H.J.); (M.K.)
- International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Jacek Andrzejewski
- Institute of Materials Technology, Polymer Processing Division, Faculty of Mechanical Engineering, Poznań University of Technology, Piotrowo 3 St., 61-138 Poznań, Poland;
| | - Mariana Cristea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A. Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- International Polish-Romanian Research Laboratory ADVAPOL, “Petru Poni” Institute of Macromolecular Chemistry, 41-A. Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Krzysztof Musioł
- Department of Measurement Science, Electronics and Control, Silesian University of Technology (SUT), Akademicka 10 St., 44-100 Gliwice, Poland; (K.M.); (M.K.)
| | - Marian Kampik
- Department of Measurement Science, Electronics and Control, Silesian University of Technology (SUT), Akademicka 10 St., 44-100 Gliwice, Poland; (K.M.); (M.K.)
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (J.R.); (H.J.); (M.K.)
- International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV 11 LY, UK
| |
Collapse
|
2
|
D’Arienzo L, Acierno S, Patti A, Di Maio L. Cellulose/Polyhydroxybutyrate (PHB) Composites as a Sustainable Bio-Based Feedstock to 3D-Printing Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:916. [PMID: 38399168 PMCID: PMC10890324 DOI: 10.3390/ma17040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
In this work, we have studied the potential application for 3D-printing of a polymer made from combining a biodegradable and biocompatible polymer (i.e., polyhydroxybutyrate, PHB) with natural bio-based fiber (i.e., cellulose). To this end, a masterbatch at 15 wt.% in filler content was prepared by melt-blending, and then this system was "diluted" with pure PHB in a second extrusion phase in order to produce filaments at 1.5 and 3 wt.% of cellulose. For comparison, a filament made of 100% virgin PHB pellets was prepared under the same conditions. All the systems were then processed in the 3D-printer apparatus, and specimens were mainly characterized by static (tensile and flexural testing) and dynamic mechanical analysis. Thermogravimetric analysis, differential scanning calorimetry, spectroscopic measurements, and morphological aspects of PHB polymer and composites were also discussed. The results showed a significant negative impact of the process on the mechanical properties of the basic PHB with a reduction in both tensile and flexural mechanical properties. The PHB-cellulose composites showed a good dispersion filler in the matrix but a poor interfacial adhesion between the two phases. Furthermore, the cellulose had no effect on the melting behavior and the crystallinity of the polymer. The addition of cellulose improved the thermal stability of the polymer and minimized the negative impact of extrusion. The mechanical performance of the composites was found to be higher compared to the corresponding (processed) polymer.
Collapse
Affiliation(s)
- Lucia D’Arienzo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (L.D.); (L.D.M.)
| | - Stefano Acierno
- Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy
| | - Antonella Patti
- Department of Civil Engineering and Architecture (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Luciano Di Maio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (L.D.); (L.D.M.)
| |
Collapse
|
3
|
Acierno D, Patti A. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties-An Overview. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7664. [PMID: 38138805 PMCID: PMC10744784 DOI: 10.3390/ma16247664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
The fused deposition modeling (FDM) process, an extrusion-based 3D printing technology, enables the manufacture of complex geometrical elements. This technology employs diverse materials, including thermoplastic polymers and composites as well as recycled resins to encourage sustainable growth. FDM is used in a variety of industrial fields, including automotive, biomedical, and textiles, as a rapid prototyping method to reduce costs and shorten production time, or to develop items with detailed designs and high precision. The main phases of this technology include the feeding of solid filament into a molten chamber, capillary flow of a non-Newtonian fluid through a nozzle, layer deposition on the support base, and layer-to-layer adhesion. The viscoelastic properties of processed materials are essential in each of the FDM steps: (i) predicting the printability of the melted material during FDM extrusion and ensuring a continuous flow across the nozzle; (ii) controlling the deposition process of the molten filament on the print bed and avoiding fast material leakage and loss of precision in the molded part; and (iii) ensuring layer adhesion in the subsequent consolidation phase. Regarding this framework, this work aimed to collect knowledge on FDM extrusion and on different types of rheological properties in order to forecast the performance of thermoplastics.
Collapse
Affiliation(s)
- Domenico Acierno
- Regional Center of Competence New Technologies for Productive Activities Scarl, Via Nuova Agnano 11, 80125 Naples, Italy;
| | - Antonella Patti
- Department of Civil Engineering and Architecture (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Caputo MR, Fernández M, Aguirresarobe R, Kovalcik A, Sardon H, Candal MV, Müller AJ. Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(hydroxybutyrate-co-hydroxy Hexanoate). Polymers (Basel) 2023; 15:polym15081817. [PMID: 37111965 PMCID: PMC10143864 DOI: 10.3390/polym15081817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates are natural polyesters synthesized by microorganisms and bacteria. Due to their properties, they have been proposed as substitutes for petroleum derivatives. This work studies how the printing conditions employed in fuse filament fabrication (FFF) affect the properties of poly(hydroxybutyrate-co-hydroxy hexanoate) or PHBH. Firstly, rheological results predicted the printability of PHBH, which was successfully realized. Unlike what usually happens in FFF manufacturing or several semi-crystalline polymers, it was observed that the crystallization of PHBH occurs isothermally after deposition on the bed and not during the non-isothermal cooling stage, according to calorimetric measurements. A computational simulation of the temperature profile during the printing process was conducted to confirm this behavior, and the results support this hypothesis. Through the analysis of mechanical properties, it was shown that the nozzle and bed temperature increase improved the mechanical properties, reducing the void formation and improving interlayer adhesion, as shown by SEM. Intermediate printing velocities produced the best mechanical properties.
Collapse
Affiliation(s)
- Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Robert Aguirresarobe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - María Virginia Candal
- School of Engineering, Science and Technology, Valencian International University (VIU), 46002 Valencia, Spain
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Polycaprolactone with Glass Beads for 3D Printing Filaments. Processes (Basel) 2023. [DOI: 10.3390/pr11020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
At present, 3D printing is experiencing a great boom. The demand for new materials for 3D printing is also related to its expansion. This paper deals with manufacturing innovative polymer composite filaments suitable for the Fused Filament Fabrication method in 3D printing. As a filler, common and uncostly glass beads were used and mixed with biocompatible and biodegradable poly (ε-caprolactone), as a polymer matrix. This material was characterized via several physical-chemical methods. The Youngs modulus was increasing by about 30% with 20% loading of glass beads, and simultaneously, brittleness and elongations were decreased. The glass beads do not affect the shore hardness of filaments. The rheological measurement confirmed the material stability in a range of temperatures 75–120 °C. The presented work aimed to prepare lightweight biocompatible, cheap material with appropriate mechanical properties, lower printing temperature, and good printing processing. We can assess that the goal was fully met, and these filaments could be used for a wide range of applications.
Collapse
|
6
|
Zhang L, Ye JW, Zhang X, Huang W, Zhang Z, Lin Y, Zhang G, Wu F, Wang Z, Wu Q, Chen GQ. Effective production of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by engineered Halomonas bluephagenesis grown on glucose and 1,4-Butanediol. BIORESOURCE TECHNOLOGY 2022; 355:127270. [PMID: 35526716 DOI: 10.1016/j.biortech.2022.127270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Halomonas bluephagenesis has been engineered to produce flexible copolymers P34HB or poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose and petrol-chemical precursor, γ-butyrolactone. Herein, gene cluster aldD-dhaT was constructed in recombinant H. bluephagenesis for catalyzing 1,4-butanediol (BDO) into 4-hydroxybutyrate, which could grow to 86 g L-1 dry cell mass (DCM) containing 77 wt% P(3HB-co-14 mol% 4HB) in 7-L bioreactor fed with glucose and bio-based BDO. Furthermore, 4HB monomer ratio could be increased to 16 mol% by engineered H. bluephagenesis TDH4-WZY254 with defected outer-membrane. Upon deletion of 4HB degradation pathway, followed by aldD-dhaT integration, the resulted H. bluephagenesis TDB141ΔAC was grown to 95 g L-1 DCM containing 79 wt% P(3HB-co-14 mol% 4HB) with a BDO conversion efficiency of 86% under fed-batch fermentation. Notably, 4HB molar ratio can be significantly improved to 21 mol% with negligible effects on cell growth and P34HB synthesis by adding 50% more BDO. This study successfully demonstrated a fully bio-based P34HB effectively produced by H. bluephagenesis.
Collapse
Affiliation(s)
- Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China; Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wuzhe Huang
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ge Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ziyu Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
7
|
Haloarchaea as emerging big players in future polyhydroxyalkanoate bioproduction: Review of trends and perspectives. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|