1
|
Yang H, Qin X, Guo Y, Tao C, Cao J, Cheng T, Liu C. Bmgsb directly activates Bmubxn-4 to inhibit the DNA endoreplication and affect the cell fate in the silk gland of Bombyx mori. Int J Biol Macromol 2025; 308:142335. [PMID: 40154683 DOI: 10.1016/j.ijbiomac.2025.142335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Silk protein produced by the silk gland of silkworm (Bombyx mori), finds extensive application in tissue engineering and biomedicine. Elucidating the molecular mechanisms governing silk gland development is critical for optimizing silk protein production and its biomedical applications. Prior studies demonstrated that Bmgsb influences cell fate determination through modulation of endoreplication. To further investigate the molecular mechanism of Bmgsb, transcriptome analysis identified a novel gene, designated Bmubxn-4. Dual-luciferase reporter and electrophoretic mobility shift assays (EMSA) demonstrated that Bmgsb directly regulates Bmubxn-4 transcription. Bmubxn-4 knockdown in the ASG resulted in increased cell size, DNA endoreplication and upregulation of cell cycle-related genes. Bmubxn-4 knockdown in the AMSG resulted in developmental defects and upregulation of ubiquitin-proteasome system (UPS)-related genes. These findings indicate that Bmubxn-4, a direct target gene of Bmgsb, plays a crucial role in silk gland cell redifferentiation and DNA endoreplication. This study provides novel insights into silk gland cell differentiation and the transcriptional regulation of silk protein.
Collapse
Affiliation(s)
- Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuanyuan Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Li H, Guo Y, Yin J, Chen W, Xu H, Cheng T, Liu C. Critical roles of small silk fibroin molecules in the self-assembly and properties of regenerated silk fibroin. Int J Biol Macromol 2025; 284:137926. [PMID: 39577537 DOI: 10.1016/j.ijbiomac.2024.137926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Silk is primarily composed of silk fibroin (SF) and silk sericin (SS), with SF significantly contributing to the mechanical properties of silk fibers. SF consists of the large molecular fibroin heavy chain (Fib-H), small molecular fibroin light chain (Fib-L), and P25 protein. Degumming is a crucial step in both the silk reeling process and the preparation of regenerated silk fibroin (RSF), but it can cause damage to Fib-H. This study investigates how degumming affects small SF molecules and their influence on the properties of silk fibers and RSF. A gradient degumming treatment using various reagents was employed. SS antibody detection indicated that 3 g/L papain and sodium carbonate (Na2CO3) at concentrations ≥0.2 % almost completely removed SS. SF antibody detection revealed that Na2CO3 degumming severely damaged Fib-H and degraded Fib-L and P25. While tensile tests showed that this damage did not significantly affect the mechanical properties of SF fibers, the loss of small SF molecules reduced the mechanical properties of the RSF membranes and delayed RSF gelation. Atomic force microscopy demonstrated that RSF containing Fib-H of similar molecular weight (100-180 kDa) can self-assemble into nanofibrils when small SF molecules are present, whereas 0.5 % Na2CO3-degummed RSF lacking these small SF molecules cannot form nanofibrils. By adding additional small SF molecules to the 0.5 % Na2CO3-degummed RSF, nanofibrils can be formed. This research highlights the critical role of small SF molecules in the properties of RSF and provides a theoretical foundation for the development of RSF-derived materials.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuanyuan Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jie Yin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wei Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China.
| |
Collapse
|
3
|
Li S, Chen H, Dan X, Ju Y, Li T, Liu B, Li Y, Lei L, Fan X. Silk fibroin for cosmetic dermatology. CHEMICAL ENGINEERING JOURNAL 2025; 506:159986. [DOI: 10.1016/j.cej.2025.159986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
4
|
Yang H, Guo Y, Wang J, Tao C, Cao J, Cheng T, Liu C. Bmgsb is involved in the determination of cell fate by affecting the cell cycle genes in the silk gland of Bombyx mori. Int J Biol Macromol 2024; 283:136914. [PMID: 39515687 DOI: 10.1016/j.ijbiomac.2024.136914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Silk gland is the only organ of silkworm that can produce silk protein, which is a natural macromolecular protein complex and widely utilized in various fields such as biomaterials and biomedicine. The development of silk gland and the expression patterns of silk protein crucial for the silk industry. In this study, the function of a transcription factor Bmgsb was investigated with CRISPR/Cas9 and transgenic system. It was found that the homozygous individuals in the Bmgsb KO line experienced spinning failure and pupae death, the AMSG exhibited defects, and the ASG displayed abnormal curvature. These phenotypes were accompanied by increased DNA endoreplication and significantly upregulated expression of fibroin genes in the ASG. RT-qPCR results confirmed significant upregulation of cell cycle-related genes, including cyclin G and cyclin T in the Bmgsb KO line. Furthermore, ectopic expression of Bmgsb in the PSG weakened PSG curvature, inhibited DNA endoreplication, and downregulated the expression of fibroin genes. These findings strongly suggest that Bmgsb plays a crucial role in determining cell fate in the silk gland and regulating the expression of silk protein through the cyclin pathway. Our research provides a theoretical foundation for further studies on organ differentiation and have implications for the silk industry.
Collapse
Affiliation(s)
- Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuanyuan Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jinxia Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Tao C, Li J, Du W, Qin X, Cao J, Liu C, Cheng T. Broad Complex-Z2 directly activates BmMBF2 to inhibit the silk protein synthesis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134211. [PMID: 39069049 DOI: 10.1016/j.ijbiomac.2024.134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Silk proteins, as natural macromolecules, have extensive applications in biomaterials and biomedicine. In the silkworm, the expression of silk protein genes is negatively associated with ecdysone during the molt stage, while it is positively correlated with juvenile hormone during the intermolt stage. In our previous study, overexpression of an isoform Z2 of Broad Complex (BmBrC-Z2), an ecdysone early response factor, significantly reduced the expression of silk protein genes. However, the underlying regulatory mechanism remains unclear. In this study, we conducted transcriptomic analysis and found that overexpressing BmBrC-Z2 significantly upregulated the expression level of multiprotein bridging factor 2 (BmMBF2), an inhibitor of fibroin heavy chain (FibH). Further investigations revealed that BmBrC-Z2 directly regulated BmMBF2 by binding to cis-regulatory elements, as demonstrated using Dual-Luciferase Reporter Gene Assay, EMSA, and ChIP-PCR assay. Additionally, when using the CRISPR/Cas9 system to knock out BmMBF2, silk protein genes were significantly upregulated during the molt stage of mutant larvae. These findings uncover the negative regulation of silk protein synthesis by the ecdysone signaling cascade, specifically through the manipulation of BmMBF2 expression during the molt stage. This study enhances to our understanding of the temporal regulatory mechanism governing silk protein synthesis and offers a potential strategy for improving silk yield.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wenjie Du
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Cao J, Tao C, Qin X, Wu K, Yang H, Liu C, Cheng T. PI3K-Akt-SGF1-Dimm pathway mediates the nutritional regulation of silk protein synthesis in Bombyx mori. Int J Biol Macromol 2024; 278:134650. [PMID: 39128739 DOI: 10.1016/j.ijbiomac.2024.134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The efficient synthesis of silk protein is heavily reliant on the ingestion of massive nutrients during the peak growth phase in the silkworm. However, the molecular mechanism of nutritional regulation of silk protein synthesis remains unknown. In this study, we investigated the impact of nutrient deficiency on the synthesis of silk protein. Nutritional deficiency led to a reduction in silk yield, accompanied by decreased levels of silk proteins and fibroin heavy chain (FibH)-activating transcription factors SGF1 and Dimm. Furthermore, insulin enhanced the protein levels of SGF1 and Dimm, which can be attenuated by specific inhibitors of PI3K. Co-immunoprecipitation analysis showed that the nutrient pathway factor protein kinase B (Akt) could interact with SGF1 protein. Knockdown of Akt reduced the phosphorylation level of SGF1 and impedes its nuclear translocation. Further studies revealed that SGF1 was directly bound to Fkh site in the 22-43 region upstream of ATG of Dimm gene to activate its transcription. In conclusion, during the peak growth phase, nutrition promotes the massive synthesis of silk protein through the PI3K-Akt-SGF1-Dimm pathway. This study offers valuable insights into the efficient synthesis of silk proteins and establishes a theoretical foundation for improving silk yield.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Keli Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
7
|
Borges A, Calvo MLM, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4199. [PMID: 39274589 PMCID: PMC11395905 DOI: 10.3390/ma17174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Wound healing, a complex physiological process orchestrating intricate cellular and molecular events, seeks to restore tissue integrity. The burgeoning interest in leveraging the therapeutic potential of natural substances for advanced wound dressings is a recent phenomenon. Notably, Sericin, a silk-derived protein, and Chelidonium majus L. (C. majus), a botanical agent, have emerged as compelling candidates, providing a unique combination of natural elements that may revolutionize conventional wound care approaches. Sericin, renowned for its diverse properties, displays unique properties that accelerate the wound healing process. Simultaneously, C. majus, with its diverse pharmacological compounds, shows promise in reducing inflammation and promoting tissue regeneration. As the demand for innovative wound care solutions increases, understanding the therapeutic potential of natural products becomes imperative. This review synthesizes current knowledge on Sericin and C. majus, envisioning their future roles in advancing wound management strategies. The exploration of these natural substances as constituents of wound dressings provides a promising avenue for developing sustainable, effective, and biocompatible materials that could significantly impact the field of wound healing.
Collapse
Affiliation(s)
- Ana Borges
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Desarrollo y Evaluación de Formas Farmacéuticas y Sistemas de Liberación Controlada, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - María Luisa Martín Calvo
- Grupo de Investigación en Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Josiana A Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Deng M, Pan J, Sun H, Zhang J, He H, Wang Z, Fu F, Liu X, Zhu G, Khabibulla P, Kayumov J. Utilization of deep eutectic solvent as a degumming protocol for raw silk: Towards performance and mechanism elucidation. Int J Biol Macromol 2024; 274:132770. [PMID: 38834121 DOI: 10.1016/j.ijbiomac.2024.132770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Degumming is the most critical step for the silk textile industry and the process of silk-based advanced materials. However, current common degumming techniques are largely limited because of insufficient efficiency, obvious hydrolysis damage and difficulty in long-term storage. Here, deep eutectic solvent (DES) constituted of choline chloride (ChCl) and urea was explored to Bombyx mori silk fibers degumming without combining any further treatment. Compared to traditional alkali methods, DES could quickly remove about 26.5 % of sericin in just 40 min, and its degumming efficiency hardly decrease after seven cycles. Owing to the "tear off" degumming mechanism of DES molecules with "large volume", the resulted sericin has a large molecular weight of 250 kDa. In addition, because of antibacterial activity and stabilizing effect, no aggregation occurred and strong bacterial growth inhibition was triggered in the obtained sericin/DES solution. Furthermore, thanks to the good retention of crystalline region and slight swelling of amorphous area, the sericin-free fibroin showed significant increases in moisture absorption and dye uptake, while maintaining good mechanical properties. Featured with high efficiency, reduction in water pollution, easy storage of sericin as well as high quality fibers, this approach is of great potential for silk wet processing.
Collapse
Affiliation(s)
- Mingxiu Deng
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiana Pan
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haixun Sun
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Zhang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongfan He
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengfeng Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feiya Fu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Project Promotion Department, Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China.
| | - Xiangdong Liu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Guocheng Zhu
- Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Parpiev Khabibulla
- Department of Technology of Textile industry products, Namangan Institute of Engineering and Technology. 7, Kasansay Street, Namangan 160115, Uzbekistan
| | - Juramirza Kayumov
- Department of Technology of Textile industry products, Namangan Institute of Engineering and Technology. 7, Kasansay Street, Namangan 160115, Uzbekistan
| |
Collapse
|
9
|
Yang H, Xu Y, Yuan Y, Liu X, Zhang J, Li J, Zhang R, Cao J, Cheng T, Liu C. Identification and function of the Pax gene Bmgsb in the silk gland of Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:173-184. [PMID: 38238257 DOI: 10.1111/imb.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 05/08/2024]
Abstract
Paired box (Pax) genes are highly conserved throughout evolution, and the Pax protein is an important transcription factor of embryonic development. The Pax gene Bmgsb is expressed in the silk glands of silkworm, but its biological functions remain unclear. This study aimed to investigate the expression pattern of Bmgsb in the silk gland and explore its functions using RNA interference (RNAi). Here, we identified eight Pax genes in Bombyx mori. Phylogenetic analysis showed that the B. mori Pax genes were highly homologous to the Pax genes in other insects and highly evolutionarily conserved. The tissue expression profile showed that Bmgsb was expressed in the anterior silk gland and anterior part of the middle silk gland (AMSG). RNAi of Bmgsb resulted in defective development of the AMSG, and the larvae were mostly unable to cocoon in the wandering stage. RNA-seq analysis showed that the fibroin genes fib-l, fib-h and p25, cellular heat shock response-related genes and phenol oxidase genes were considerably upregulated upon Bmgsb knockdown. Furthermore, quantitative reverse transcription-PCR results showed that the fibroin genes and ubiquitin proteolytic enzyme-related genes were significantly upregulated in the AMSG after Bmgsb knockdown. This study provides a foundation for future research on the biological functions of B. mori Pax genes. In addition, it demonstrates the important roles of Bmgsb in the transcriptional regulation of fibroin genes and silk gland development.
Collapse
Affiliation(s)
- Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yongping Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yutong Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xuebing Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jikailang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ran Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
10
|
Peng M, Wang G, Zhu S. Cold-stored mulberry leaves affect antioxidant system and silk proteins of silkworm (Bombyx mori) larva. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7673-7682. [PMID: 37431698 DOI: 10.1002/jsfa.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Cold storage has been widely used to maintain the quality of vegetables, but whether eating cold-stored vegetables affects health remains unknown. RESULTS This study used silkworms as an animal model to evaluate the effects of nutrient changes in cold-stored mulberry leaves (CSML) on health. Compared with fresh mulberry leaves (FML), CSML contained lower vitamin C, soluble sugars and proteins, and higher H2 O2 , suggesting decreased antioxidant ability and nutrition. The CSML did not obviously affect larval survival rate, body weight or dry matter rate, cocoon shape, weight and size, or final rates of cluster and cocooning relative to the FML, suggesting CSML did not alter overall growth and development. However, the CSML increased the initial rates of cluster and cocooning and upregulated BmRpd3, suggesting CSML shortened larval lifespan and enhanced senescence. CSML upregulated BmNOX4, downregulated BmCAT, BmSOD and BmGSH-Px and increased H2 O2 in silkworms, suggesting CSML caused oxidative stress. CSML upregulated ecdysone biosynthesis and inactivation genes and elevated ecdysone concentration in silkworms, suggesting that CSML affected hormone homeostasis. CSML upregulated apoptosis-related genes, downregulated sericin and silk fibroin genes and decreased sericin content rate in silkworms, suggesting oxidative stress and protein deficiency. CONCLUSION Cold storage reduced nutrition and antioxidant capability of mulberry leaves. CSML did not influence growth and development of silkworm larva, but affected health by causing oxidative stress and reducing protein synthesis. The findings show that the ingredient changes in CSML had negative effects on health of silkworms. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guang Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Zhang X, Zhang J, Wu K, Yang H, Cheng T, Liu C. Identification and Functions of JHE 6 Specifically Expressed in Bombyx mori Silk Gland. INSECTS 2023; 14:908. [PMID: 38132582 PMCID: PMC10743834 DOI: 10.3390/insects14120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Juvenile hormone esterase (JHE) is the specific enzyme that degrades juvenile hormone (JH) and regulates the JH titer in insects. JH also regulates the development of the silk gland and the synthesis and secretion of silk proteins in Bombyx mori. Here, we identified nine possible JHE family members, Bmjhe1-9. Notably, Bmjhe6 is specifically expressed in the silk gland. Using semi-quantitative, quantitative real-time RT-PCR and Western blot, it was confirmed that Bmjhe6 was specifically expressed in the middle silk gland (MSG) with high levels in the anterior region of the MSG (A-MSG). The immunofluorescence localization analysis revealed that Bmjhe6 is produced within cells, secreted into the gland lumen, and co-transported with silk proteins into the anterior silk gland (ASG). In vitro hormone induction experiments demonstrated that Bmjhe6 responds to a JH analog, increasing its expression after 12-24 h, whereas 20-hydroxyecdysone inhibited it. In addition, Bmjhe6 knockdown using dsBmjhe6 injections accelerated larval development, resulting in increased larval body and silk gland weight. This induced disordered sericin genes (Ser2, Ser3) expression, and key genes in the JH synthesis pathway (BmKr-h1 and BmMet1) were significantly upregulated along with the transcription factors (SGF-1 and Sage). These results indicate that Bmjhe6 plays an important role in silk gland growth and silk protein synthesis by modulating JH signal.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Jikailang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Keli Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
12
|
BmSuc1 Affects Silk Properties by Acting on Sericin1 in Bombyx mori. Int J Mol Sci 2022; 23:ijms23179891. [PMID: 36077290 PMCID: PMC9456260 DOI: 10.3390/ijms23179891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022] Open
Abstract
BmSuc1, a novel animal-type β-fructofuranosidase (β-FFase, EC 3.2.1.26) encoding gene, was cloned and identified for the first time in the silkworm, Bombyx mori. BmSuc1 was specifically and highly expressed in the midgut and silk gland of Bombyx mori. Until now, the function of BmSuc1 in the silk gland was unclear. In this study, it was found that the expression changes of BmSuc1 in the fifth instar silk gland were consistent with the growth rate of the silk gland. Next, with the aid of the CRISPR/Cas9 system, the BmSuc1 locus was genetically mutated, and homozygous mutant silkworm strains with truncated β-FFase (BmSUC1) proteins were established. BmSuc1 mutant larvae exhibited stunted growth and decreased body weight. Interestingly, the molecular weight of part of Sericin1 (Ser1) in the silk gland of the mutant silkworms was reduced. The knockout of BmSuc1 reduced the sericin content in the silkworm cocoon shell, and the mechanical properties of the mutant line silk fibers were also negatively affected. These results reveal that BmSUC1 is involved in the synthesis of Ser1 protein in silk glands and helps to maintain the homeostasis of silk protein content in silk fibers and the mechanical properties of silk fibers, laying a foundation for the study of BmSUC1 regulation of silk protein synthesis in silk glands.
Collapse
|