1
|
Hamouda HI, Li T, Shabana S, Hashem AH, Yin H. Advances in fucoidan and fucoidan oligosaccharides: Current status, future prospects, and biological applications. Carbohydr Polym 2025; 358:123559. [PMID: 40383599 DOI: 10.1016/j.carbpol.2025.123559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 05/20/2025]
Abstract
Sulfated polysaccharides (SPS) derived from seaweeds are precious bioactive compounds of diverse biological activities. Fucoidan is a complex SPS composed of L-fucose and sulfate groups, can be extracted from brown seaweeds, as well as microbial, insect, plant glycans, and marine invertebrates. It has gained considerable attention due to its anti-inflammatory, anticancer, antiviral, antithrombotic, hypolipidemic, and immune-modulatory properties. Recent research has focused on the extraction and extensive characterization of fucoidan. Its structural complexity, influenced by species, sources, and harvesting conditions, directly influences its bioactivity, with higher sulfation and lower molecular weight enhancing its activity. Interestingly, fucoidan oligosaccharides (FOs) play a critical role in various metabolic processes and hold significant potential in disease diagnostics. This comprehensive review explores the current status of fucoidan research, covering its sources, extraction and purification techniques, structural variations and biological activities. Additionally, we highlight its potential health benefits, providing insights for researchers interested in sulfated polysaccharides.
Collapse
Affiliation(s)
- Hamed I Hamouda
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Samah Shabana
- School of Biomedical Engineering, Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
2
|
El Asri S, Ben Mrid R, Zouaoui Z, Roussi Z, Ennoury A, Nhiri M, Chibi F. Advances in structural modification of fucoidans, ulvans, and carrageenans to improve their biological functions for potential therapeutic application. Carbohydr Res 2025; 549:109358. [PMID: 39718272 DOI: 10.1016/j.carres.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Marine sulfated polysaccharides constitute a class of bioactive polymers commonly found in cell walls of macroalgae. Among these macromolecular substances, fucoidans, ulvans, and carrageenans have attracted considerable attention providing interesting therapeutic properties affected by a combination of various structural factors, such as sulfation pattern, molecular weight, monosaccharide composition, and glycosidic linkages. Remarkably, chemical modification, enzymatic hydrolysis and crosslinking are promising approaches for developing the application of these polysaccharides through enhancement and/or addition of new biological properties. This paper reviews the recent advances on these structure modification methods on fucoidans, ulvans, and carrageenans. The physical, chemical and biological properties influenced by the addition of functional groups are also discussed. In addition, an overview of specific enzymes selectively producing oligosaccharides with improved bioactivities as well as ionic and covalent cross-linking strategies are provided. These targeted methods have the potential to develop novel compounds with outstanding biodegradability and biocompatibility, along with low toxicity suitable for diverse applications in biomedical fields, including drug delivery.
Collapse
Affiliation(s)
- Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco; Institute of Biological Sciences (ISSB-P), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P) , Ben-Guerir, 43150, Morocco.
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Fatiha Chibi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| |
Collapse
|
3
|
de Villiers M, Kotzé AF, du Plessis LH. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. Biomed Mater 2024; 19:055034. [PMID: 39025118 DOI: 10.1088/1748-605x/ad651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The high incidence of malignant melanoma highlights the need forin vitromodels that accurately represent the tumour microenvironment, enabling developments in melanoma therapy and drug screening. Despite several advancements in 3D cell culture models, appropriate melanoma models for evaluating drug efficacy are still in high demand. The 3D pneumatic extrusion-based bioprinting technology offers numerous benefits, including the ability to achieve high-throughput capabilities. However, there is a lack of research that combines pneumatic extrusion-based bioprinting with analytical assays to enable efficient drug screening in 3D melanoma models. To address this gap, this study developed a simple and highly reproducible approach to fabricate a 3D A375 melanoma cell culture model using the pneumatic extrusion-based bioprinting technology. To optimise this method, the bioprinting parameters for producing 3D cell cultures in a 96-well plate were adjusted to improve reproducibility while maintaining the desired droplet size and a cell viability of 92.13 ± 6.02%. The cross-linking method was optimised by evaluating cell viability and proliferation of the 3D bioprinted cells in three different concentrations of calcium chloride. The lower concentration of 50 mM resulted in higher cell viability and increased cell proliferation after 9 d of incubation. The A375 cells exhibited a steadier proliferation rate in the 3D bioprinted cell cultures, and tended to aggregate into spheroids, whereas the 2D cell cultures generally formed monolayered cell sheets. In addition, we evaluated the drug responses of four different anti-cancer drugs on the A375 cells in both the 2D and 3D cell cultures. The 3D cell cultures exhibited higher levels of drug resistance in all four tested anti-cancer drugs. This method presents a simple and cost-effective method of producing and analysing 3D cell culture models that do not add additional complexity to current assays and shows considerable potential for advancing 3D cell culture models' drug efficacy evaluations.
Collapse
Affiliation(s)
- Maryke de Villiers
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Awie F Kotzé
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
4
|
Usoltseva RV, Zueva AO, Malyarenko OS, Anastyuk SD, Moiseenko OP, Isakov VV, Kusaykin MI, Jia A, Ermakova SP. Structure and Metabolically Oriented Efficacy of Fucoidan from Brown Alga Sargassum muticum in the Model of Colony Formation of Melanoma and Breast Cancer Cells. Mar Drugs 2023; 21:486. [PMID: 37755099 PMCID: PMC10532595 DOI: 10.3390/md21090486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
This work reports the detailed structure of fucoidan from Sargassum miticum (2SmF2) and its ability to potentiate the inhibitory effect of glycolysis inhibitor 2-deoxy-d-glucose (2-DG). 2SmF2 was shown to be sulfated and acetylated galactofucan containing a main chain of alternating residues of 1,3- and 1,4-linked α-l-fucopyranose, fucose fragments with monotonous 1,3- and 1,4-type linkages (DP up to 3), α-d-Gal-(1→3)-α-L-Fuc disaccharides, and 1,3,4- and 1,2,4-linked fucose branching points. The sulfate groups were found at positions 2 and 4 of fucose and galactose residues. 2SmF2 (up to 800 µg/mL) and 2-DG (up to 8 mM) were not cytotoxic against MDA-MB-231 and SK-MEL-28 as determined by MTS assay. In the soft agar-based model of cancer cell colony formation, fucoidan exhibited weak inhibitory activity at the concentration of 400 µg/mL. However, in combination with low non-cytotoxic concentrations of 2-DG (0.5 or 2 mM), 2SmF2 could effectively inhibit the colony formation of SK-MEL-28 and MDA-MB-231 cells and decreased the number of colonies by more than 50% compared to control at the concentration of 200 µg/mL. Our findings reveal the metabolically oriented effect of fucoidan in combination with a glycolysis inhibitor that may be beneficial for a therapy for aggressive cancers.
Collapse
Affiliation(s)
- Roza V. Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, Vladivostok 690022, Russia; (A.O.Z.); (O.S.M.); (S.D.A.); (S.P.E.)
| | - Anastasiya O. Zueva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, Vladivostok 690022, Russia; (A.O.Z.); (O.S.M.); (S.D.A.); (S.P.E.)
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, Vladivostok 690022, Russia; (A.O.Z.); (O.S.M.); (S.D.A.); (S.P.E.)
| | - Stanislav D. Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, Vladivostok 690022, Russia; (A.O.Z.); (O.S.M.); (S.D.A.); (S.P.E.)
| | - Olga P. Moiseenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, Vladivostok 690022, Russia; (A.O.Z.); (O.S.M.); (S.D.A.); (S.P.E.)
| | - Vladimir V. Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, Vladivostok 690022, Russia; (A.O.Z.); (O.S.M.); (S.D.A.); (S.P.E.)
| | - Mikhail I. Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, Vladivostok 690022, Russia; (A.O.Z.); (O.S.M.); (S.D.A.); (S.P.E.)
| | - Airong Jia
- Key Laboratory for Applied Microbiology of Shandong Province, Biology Institute of Shandong Academy of Sciences, Jinan 250014, China;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, Vladivostok 690022, Russia; (A.O.Z.); (O.S.M.); (S.D.A.); (S.P.E.)
| |
Collapse
|
5
|
Du B, Zhao Q, Cheng C, Wang H, Liu Y, Zhu F, Yang Y. A critical review on extraction, characteristics, physicochemical activities, potential health benefits, and industrial applications of fucoidan. EFOOD 2022. [DOI: 10.1002/efd2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Qiancheng Zhao
- College of Food Science and Engineering Dalian Ocean University Dalian China
| | - Caihong Cheng
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Huiying Wang
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Yanfei Liu
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Fengmei Zhu
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Yuedong Yang
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| |
Collapse
|
6
|
Popov RS, Ivanchina NV, Dmitrenok PS. Application of MS-Based Metabolomic Approaches in Analysis of Starfish and Sea Cucumber Bioactive Compounds. Mar Drugs 2022; 20:320. [PMID: 35621972 PMCID: PMC9147407 DOI: 10.3390/md20050320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Today, marine natural products are considered one of the main sources of compounds for drug development. Starfish and sea cucumbers are potential sources of natural products of pharmaceutical interest. Among their metabolites, polar steroids, triterpene glycosides, and polar lipids have attracted a great deal of attention; however, studying these compounds by conventional methods is challenging. The application of modern MS-based approaches can help to obtain valuable information about such compounds. This review provides an up-to-date overview of MS-based applications for starfish and sea cucumber bioactive compounds analysis. While describing most characteristic features of MS-based approaches in the context of starfish and sea cucumber metabolites, including sample preparation and MS analysis steps, the present paper mainly focuses on the application of MS-based metabolic profiling of polar steroid compounds, triterpene glycosides, and lipids. The application of MS in metabolomics studies is also outlined.
Collapse
Affiliation(s)
- Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | | | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| |
Collapse
|
7
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
8
|
Gam DH, Park JH, Kim JH, Beak DH, Kim JW. Effects of Allium sativum Stem Extract on Growth and Migration in Melanoma Cells through Inhibition of VEGF, MMP-2, and MMP-9 Genes Expression. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010021. [PMID: 35011253 PMCID: PMC8746369 DOI: 10.3390/molecules27010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
The present study investigated the effects of Allium sativum stem extract (ASE) on B16-F0 cell growth and metastasis. Evaluation of the effects of ASE on B16-F0 cells’ viability and migration showed that 0.5 mg/mL ASE inhibited B16-F0 cells’ growth by 30.2% and migration by 38.5%, which indicates that the ASE has anticancer and antimetastatic effects on B16-F0 cells. To study the anticancer and antimetastatic mechanism, mRNA levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases-2 (MMP-2), and matrix metalloproteinases-9 (MMP-9) expressions were evaluated with reverse transcription polymerase chain reaction, and 0.25 and 0.5 mg/mL ASE was found to exert significant inhibition on mRNA expressions of VEGF, MMP-2, and MMP-9 in B16-F0 cells. Thus, ASE reduce extracellular matrix degradation through inhibitions of expression of MMP-2 and MMP-9, and also showed an angiogenesis inhibitory effect through reduction of VEGF expression. High-performance liquid chromatography analysis showed that among various polyphenols, gallic acid (2.1 mg/g) was a major compound of ASE. Overall, our results demonstrated that ASE inhibited the growth and migration of B16-F0 cells through downregulation of the VEGF, MMP-2, and MMP-9 genes expression, which indicates ASE could be applied for the prevention and treatment of melanoma.
Collapse
Affiliation(s)
- Da-Hye Gam
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
| | - Jae-Hyun Park
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
| | - Jun-Hee Kim
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
| | - Dong-Ho Beak
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
| | - Jin-Woo Kim
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
- FlexPro Biotechnology, Natural Science 128, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea
- Correspondence: ; Tel.: +82-41-530-2226
| |
Collapse
|