1
|
Peng Y, Liu H, Miao M, Cheng X, Chen S, Yan K, Mu J, Cheng H, Liu G. Micro-Nano Convergence-Driven Radiotheranostic Revolution in Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29047-29081. [PMID: 40347149 DOI: 10.1021/acsami.5c05525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Radiotherapy, as an important means of treating hepatocellular carcinoma (HCC), has shown unique therapeutic advantages, especially in patients who are unable to undergo surgery or transplantation. It mainly includes external radiotherapy, transarterial radioembolization and intratumoral radioactive particle implantation. However, under the influence of factors such as the hypoxic characteristics of the liver tumor microenvironment and the radioresistance of tumor cells, the effect of radiotherapy may be unstable and may cause side effects, affecting the quality of life of patients. In recent years, with the development of nanotechnology, drug delivery systems based on micro-nanomaterials have provided new solutions for improving the effect of radiotherapy for HCC. Despite this, the application of micro-nano drug delivery systems in the treatment of HCC still faces some challenges, mainly including the in vivo safety and in vivo metabolism of micro-nano materials. This article reviews the latest progress of micro-nano materials in the treatment of HCC, especially their application in radiosensitization and their clinical translation potential. This article systematically analyzes the role of micro-nanomaterials in external or internal radiotherapy sensitization and radioimmunotherapy and explores the advantages of micro-nanomaterials in improving the treatment effect of HCC.
Collapse
Affiliation(s)
- Yisheng Peng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mengmeng Miao
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xu Cheng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shangqing Chen
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kaifei Yan
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR 999078, China
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Shetta A, Osama A, Hanafi AA, Ali IH, El Salakawy N, Mamdouh W. "Box-Behnken Design for optimizing the synthesis of chitosan/PVA/Camellia sinensis essential oil composite: Thermal stability, in vitro release, antioxidant, in silico studies and antibacterial activities". Int J Biol Macromol 2025; 309:142724. [PMID: 40174845 DOI: 10.1016/j.ijbiomac.2025.142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/20/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Bacterial pathogens and chemical contaminants in food threaten human health globally. This work addresses two critical knowledge gaps: optimizing Camellia sinensis Oil (CSO) incorporation into chitosan/polyvinyl alcohol (CS/PVA) matrices and elucidating antibacterial mechanisms through in-silico docking, advancing bio-based packaging for food safety. Box-Behnken Design optimized CSO-loaded films for chemical, physical, and mechanical properties. Films were characterized using SEM, FTIR spectroscopy, and TGA, then tested for antioxidant activity, water vapor permeability, transparency, and mechanical properties including tensile strength and elongation at break. CSO release from the matrix followed a biphasic profile at pH 7.4, with 20 % burst release within 12 h followed by sustained release over 72 h, governed by Hixson-Crowell matrix degradation mechanisms. To understand binding interactions, in-silico docking studies were conducted between 4-vinylguaiacol (key CSO component) and target proteins (DNA Gyrase, Sortase A, and SPI4) from Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Salmonella Typhi (S. Typhi), respectively, revealing strong binding affinities (-5 to -8.1 Kcal/mol). The developed CSO-loaded films demonstrated significant antibacterial enhancement compared to unloaded films: 30-fold against gram-positive S. aureus, 13.4-fold and 7-fold against gram-negative S. Typhi and E. coli, respectively, confirming optimal CSO incorporation substantially improved food packaging safety and effective antibacterial protection.
Collapse
Affiliation(s)
- Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Aya Osama
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Asmaa A Hanafi
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Noha El Salakawy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
3
|
Quintero-Rincón P, Caballero-Gallardo K, Olivero-Verbel J. Natural anticancer agents: prospection of medicinal and aromatic plants in modern chemoprevention and chemotherapy. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:25. [PMID: 40257645 PMCID: PMC12011705 DOI: 10.1007/s13659-025-00511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Natural products obtained from medicinal and aromatic plants are increasingly recognized as promising anticancer agents due to their structural richness, including terpene and flavonoid molecules, which induce apoptosis and modulate gene expression. These compounds offer an alternative to conventional treatments, often costly, which face challenges such as multidrug resistance. This review aims to provide a promising alternative approach to effectively control cancer by consolidating significant findings in identifying natural products and anticancer agent development from medicinal and aromatic plants. It synthesizes the findings of a comprehensive search of academic databases, such as PubMed and Springer, prioritizing articles published in recognized peer-reviewed journals that address the bioprospecting of medicinal and aromatic plants as anticancer agents. The review addresses the anticancer activities of plant extracts and essential oils, which were selected for their relevance to chemoprevention and chemotherapy. Compounds successfully used in cancer therapy include Docetaxel (an antimitotic agent), Etoposide VP-16 (an antimitotic agent and topoisomerase II inhibitor), Topotecan (a topoisomerase I inhibitor), Thymoquinone (a Reactive Oxygen Species-ROS inducer), and Phenethyl isothiocyanate (with multiple mechanisms). The review highlights natural products such as Hinokitiol, Mahanine, Hesperetin, Borneol, Carvacrol, Eugenol, Epigallocatechin gallate, and Capsaicin for their demonstrated efficacy against multiple cancer types, including breast, cervical, gastric, colorectal, pancreatic, lung, prostate, and skin cancer. Finally, it highlights the need for continued bioprospecting studies to identify novel natural products that can be successfully used in modern chemoprevention and chemotherapy.
Collapse
Affiliation(s)
- Patricia Quintero-Rincón
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, 050010, Medellín, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, Universidad de Cartagena, 130014, Cartagena, Colombia.
| | - Karina Caballero-Gallardo
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, Universidad de Cartagena, 130014, Cartagena, Colombia
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, Universidad de Cartagena, 130014, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, Universidad de Cartagena, 130014, Cartagena, Colombia
| |
Collapse
|
4
|
Taha E, Shetta A, Nour SA, Naguib MJ, Mamdouh W. Versatile Nanoparticulate Systems as a Prosperous Platform for Targeted Nose-Brain Drug Delivery. Mol Pharm 2024; 21:999-1014. [PMID: 38329097 DOI: 10.1021/acs.molpharmaceut.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The intranasal route has proven to be a reliable and promising route for delivering therapeutics to the central nervous system (CNS), averting the blood-brain barrier (BBB) and avoiding extensive first-pass metabolism of some drugs, with minimal systemic exposure. This is considered to be the main problem associated with other routes of drug delivery such as oral, parenteral, and transdermal, among other administration methods. The intranasal route maximizes drug bioavailability, particularly those susceptible to enzymatic degradation such as peptides and proteins. This review will stipulate an overview of the intranasal route as a channel for drug delivery, including its benefits and drawbacks, as well as different mechanisms of CNS drug targeting using nanoparticulate drug delivery systems devices; it also focuses on pharmaceutical dosage forms such as drops, sprays, or gels via the nasal route comprising different polymers, absorption promoters, CNS ligands, and permeation enhancers.
Collapse
Affiliation(s)
- Esraa Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Samia A Nour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Marianne J Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
5
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Shetta A, Ali IH, Sharaf NS, Mamdouh W. "Review of strategic methods for encapsulating essential oils into chitosan nanosystems and their applications". Int J Biol Macromol 2024; 259:129212. [PMID: 38185303 DOI: 10.1016/j.ijbiomac.2024.129212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Essential oils (EOs) are hydrophobic, concentrated extracts of botanical origin containing diverse bioactive molecules that have been used for their biomedical properties. On the other hand, the volatility, toxicity, and hydrophobicity limited their use in their pure form. Therefore, nano-encapsulation of EOs in a biodegradable polymeric platform showed a solution. Chitosan (CS) is a biodegradable polymer that has been intensively used for EOs encapsulation. Various approaches such as homogenization, probe sonication, electrospinning, and 3D printing have been utilized to integrate EOs in CS polymer. Different CS-based platforms were investigated for EOs encapsulation such as nanoparticles (NPs), nanofibers, films, nanoemulsions, 3D printed composites, and hydrogels. Biological applications of encapsulating EOs in CS include antioxidant, antimicrobial, and anticancer functions. This review explores the principles for nanoencapsulation strategies, and the available technologies are also reviewed, in addition to an in-depth overview of the current research and application of nano-encapsulated EOs.
Collapse
Affiliation(s)
- Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Isra H Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Nouran S Sharaf
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
7
|
Dawood DH, Sayed MM, Tohamy STK, Nossier ES. New Thiophenyl-pyrazolyl-thiazole Hybrids as DHFR Inhibitors: Design, Synthesis, Antimicrobial Evaluation, Molecular Modeling, and Biodistribution Studies. ACS OMEGA 2023; 8:39250-39268. [PMID: 37901585 PMCID: PMC10600881 DOI: 10.1021/acsomega.3c04736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
The antibiotic resistance problems constitute a considerable threat to human health worldwide; thus, the discovery of new antimicrobial candidates to conquer this issue is an imperative requirement. From this view, new thiophenyl-pyrazolyl-thiazole hybrids 3-10 were synthesized and screened for their antibacterial efficiency versus Gram - and Gram + bacterial strains compared to the reference drug amoxicillin. It was noticed that the new hybrids displayed significant antibacterial efficacy versus Gram - bacteria, especially against Pseudomonas aeruginosa. Also, all the screened candidates demonstrated a noticeable antifungal effect against Candida albicans (MICs = 3.9-125 μg/mL) relative to fluconazole (MIC = 250 μg/mL). Moreover, the new hybrids were investigated for their antituberculosis potency against Mycobacterium tuberculosis (RCMB 010126). Derivatives 4c, 6b, 8b, 9b, and 10b demonstrated prominent antituberculosis efficiency (MICs = 0.12-1.95 μg/mL) compared with the reference drug isoniazid (MIC = 0.12 μg/mL). The latter derivatives were further assessed for their inhibitory potency versus M. tuberculosis DHFR enzyme. The compounds 4c, 6b and 10b presented a remarkable suppression effect with IC50 values of 4.21, 5.70, and 10.59 μM, respectively, compared to that of trimethoprim (IC50 = 6.23 μM). Furthermore, biodistribution profile using radiolabeling way revealed a perceived uptake of 131I-compound 6b into infection induced models. The docking study for the new hybrids 4c, 6b, 8b, 9b and 10b was performed to illustrate the various binding modes with Mtb DHFR enzyme. In silico ADMET studies for the most potent inhibitors 4c, 6b and 10b were also accomplished to predict their pharmacokinetic and physicochemical features.
Collapse
Affiliation(s)
- Dina H. Dawood
- Chemistry
of Natural and Microbial Products Department, Pharmaceutical and Drug
Industries Research Institute, National
Research Centre, 33 El
Bohouth Street, Dokki, Giza 12622, Egypt
| | - Manal M. Sayed
- Labeled
Compounds Department, Hot Labs.center, Egyptian
Atomic Energy Authority (EAEA), P.O.
Box 13759, Cairo, Egypt
| | - Sally T. K. Tohamy
- Department
of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Eman S. Nossier
- Department
of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of
Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
- The
National Committee of Drugs, Academy of
Scientific Research and Technology, Cairo 11516, Egypt
| |
Collapse
|
8
|
Virmani T, Kumar G, Sharma A, Pathak K, Akhtar MS, Afzal O, Altamimi ASA. Amelioration of Cancer Employing Chitosan, Its Derivatives, and Chitosan-Based Nanoparticles: Recent Updates. Polymers (Basel) 2023; 15:2928. [PMID: 37447573 DOI: 10.3390/polym15132928] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The limitations associated with the conventional treatment of cancer have necessitated the design and development of novel drug delivery systems based mainly on nanotechnology. These novel drug delivery systems include various kinds of nanoparticles, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, hydrogels, and polymeric micelles. Among the various kinds of novel drug delivery systems, chitosan-based nanoparticles have attracted the attention of researchers to treat cancer. Chitosan is a polycationic polymer generated from chitin with various characteristics such as biocompatibility, biodegradability, non-toxicity, and mucoadhesiveness, making it an ideal polymer to fabricate drug delivery systems. However, chitosan is poorly soluble in water and soluble in acidic aqueous solutions. Furthermore, owing to the presence of reactive amino groups, chitosan can be chemically modified to improve its physiochemical properties. Chitosan and its modified derivatives can be employed to fabricate nanoparticles, which are used most frequently in the pharmaceutical sector due to their possession of various characteristics such as nanosize, appropriate pharmacokinetic and pharmacodynamic properties, non-immunogenicity, improved stability, and improved drug loading capacity. Furthermore, it is capable of delivering nucleic acids, chemotherapeutic medicines, and bioactives using modified chitosan. Chitosan and its modified derivative-based nanoparticles can be targeted to specific cancer sites via active and passive mechanisms. Based on chitosan drug delivery systems, many anticancer drugs now have better effectiveness, potency, cytotoxicity, or biocompatibility. The characteristics of chitosan and its chemically tailored derivatives, as well as their use in cancer therapy, will be examined in this review.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
9
|
Yuan Y, Ma M, Zhang S, Wang D. Efficient Utilization of Tea Resources through Encapsulation: Dual Perspectives from Core Material to Wall Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1310-1324. [PMID: 36637407 DOI: 10.1021/acs.jafc.2c07346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the high production and consumption of tea around the world, efficient utilization of tea byproducts (tea pruning, tea residues after production, and drinking) is the focus of improving the economy of the tea industry. This review comprehensively discusses the efficient utilization of tea resources by encapsulation from the dual perspectives of core material and wall material. The core material is mainly tea polyphenols, followed by tea oils. The encapsulation system for tea polyphenols includes microcapsules, nanoparticles, emulsions, gels, conjugates, metal-organic frameworks, liposomes, and nanofibers. In addition, it is also diversified for the encapsulation of tea oils. Tea resources as wall materials refer to tea saponins, tea polyphenols, tea proteins, and tea polysaccharides. The application of the tea-based delivery system widely involves functionally fortified food, meat preservation, film, medical treatment, wastewater treatment, and plant protection. In the future, the coencapsulation of tea resources as core materials and other functional ingredients, the precise targeting of these tea resources, and the wide application of tea resources in wall materials need to be focused on. In conclusion, the described technofunctional properties and future research challenges in this review should be followed.
Collapse
Affiliation(s)
- Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Radiolabeling of statistically optimized nanosized atorvastatin suspension for liver targeting and extensive imaging of hepatocellular carcinoma. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Varani M, Bentivoglio V, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: SPECT Use (Part 1). Biomolecules 2022; 12:biom12101522. [PMID: 36291729 PMCID: PMC9599158 DOI: 10.3390/biom12101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
The use of nanoparticles (NPs) is rapidly increasing in nuclear medicine (NM) for diagnostic and therapeutic purposes. Their wide use is due to their chemical–physical characteristics and possibility to deliver several molecules. NPs can be synthetised by organic and/or inorganic materials and they can have different size, shape, chemical composition, and charge. These factors influence their biodistribution, clearance, and targeting ability in vivo. NPs can be designed to encapsulate inside the core or bind to the surface several molecules, including radionuclides, for different clinical applications. Either diagnostic or therapeutic radioactive NPs can be synthetised, making a so-called theragnostic tool. To date, there are several methods for radiolabelling NPs that vary depending on both the physical and chemical properties of the NPs and on the isotope used. In this review, we analysed and compared different methods for radiolabelling NPs for single-photon emission computed tomography (SPECT) use.
Collapse
Affiliation(s)
- Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
- Correspondence:
| | - Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
| |
Collapse
|
12
|
Mohamed AE, Shetta A, Kegere J, Mamdouh W. Antibacterial and antioxidant properties of Cichorium intybus extract embedded in chitosan nanocomposite nanofibers. Int J Biol Macromol 2022; 215:387-397. [PMID: 35718156 DOI: 10.1016/j.ijbiomac.2022.06.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria acquired serious bacterial resistance against antibiotics. Untreated dangerous infections can cause death. We proposed nanofibers (NFs) of Polyvinyl alcohol (PVA)/Chitosan (CS) nanocomposite embedded with Chicory root extract (CRE) as a safe solution. We determined the best extraction solvent and drying method, 70 % ethanol and freeze-drying, respectively. We investigated the optimal electrospinner parameters for a smooth PVA/CS NFs. Finally, we discovered PVA/CS/CRE-50 mg (F4) to be the most effective antibacterial and antioxidant CRE concentration. Interestingly, it was found that ethanolic extract had the highest yield % at 24.7 % with Total Phenolic Contents (TPC) of 4 mg Gallic Acid Equivalent (GAE)/1 g, 80 % antioxidant activity at 25 mg with an IC50 of 4.15 mg/mL and a Minimum Bactericidal Concentration (MBC) of 100 mg against S. aureus and 25 mg against E. coli. Remarkably, F4 NFs had an IC50 33.32 mg/mL, Entrapment Efficiency 64.89 %, Loading Capacity 4.41 %, obeying Noyes-Whitney release model. F4 had an MBC of 2 mg with both bacterial strains, which proved to be potent antibacterial material that surpasses the pure extract 50 times. F4 has also shown an extraordinary antioxidant activity that exceeds PVA/CS NF activity 23 times.
Collapse
Affiliation(s)
- Ahmed Emadelddin Mohamed
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), 11835 Cairo, Egypt
| | - Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), 11835 Cairo, Egypt
| | - James Kegere
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), 11835 Cairo, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), 11835 Cairo, Egypt.
| |
Collapse
|
13
|
Alipanah H, Yarian F, Rasti F, Safari M, Hatami S, Osanloo M. Cytotoxic effects of chitosan nanoparticles containing Zataria multiflora essential oil against human breast and melanoma cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the most common cancer among women, and melanoma incidence increases worldwide. The emergence of drug resistance and side effects of chemotherapy drugs has led to a great deal of attention being paid to the development of natural medicines, especially using essential oil. The preparation of essential oil-based nanoformulation has thus recently received more attention.
Results
In this study, chitosan nanoparticles (ChiNPs) containing Zataria multiflora essential oil with a particle size of 177 ± 10 nm, a narrow particle size distribution (SPAN 0.96), and a cubic-like shape were first prepared. IC50 values of the prepared nanoformulation against human melanoma (A-375) and breast cancer cell lines (MCF-7 and MDA-MB-468) were obtained as 32 (12–84), 46 (32–67), and 105 (85–131) µg/mL. Besides, an electrospun polycaprolactone–polyethylene oxide scaffold was prepared as a dressing after treatment with the nanoformulation. Fourier transform infrared analysis confirmed the scaffold's preparation as well as successful loading of the essential oil in chitosan nanoparticles. Furthermore, the scaffold did not show a cytotoxic effect on A-375, MCF-7, and MDA-MB-468, and its surface was hydrophobic as the water contact angle with the surface was 136.5°.
Conclusions
The prepared prototype with natural ingredients and high efficacy could be considered for further consideration in vivo study or complementary medicine.
Graphical abstract
Collapse
|
14
|
Ao H, Wang Z, Lu L, Ma H, Li H, Fu J, Li M, Han M, Guo Y, Wang X. Enhanced tumor accumulation and therapeutic efficacy of liposomal drugs through over-threshold dosing. J Nanobiotechnology 2022; 20:137. [PMID: 35292036 PMCID: PMC8922779 DOI: 10.1186/s12951-022-01349-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background Most intravenously administered drug-loaded nanoparticles are taken up by liver Kupffer cells, and only a small portion can accumulate at the tumor, resulting in an unsatisfactory therapeutic efficacy and side effects for chemotherapeutic agents. Tumor-targeted drug delivery proves to be the best way to solve this problem; however, the complex synthesis, or surface modification process, together with the astonishing high cost make its clinical translation nearly impossible. Methods Referring to Ouyang’s work and over-threshold dosing theory in general, blank PEGylated liposomes (PEG-Lipo) were prepared and used as tumor delivery enhancers to determine whether they could significantly enhance the tumor accumulation and in vivo antitumor efficacy of co-injected liposomal ACGs (PEG-ACGs-Lipo), a naturally resourced chemotherapeutic. Here, the phospholipid dose was used as an indicator of the number of liposomes particles with similar particle sizes, and the liposomes was labelled with DiR, a near-red fluorescent probe, to trace their in vivo biodistribution. Two mouse models, 4T1-bearing and U87-bearing, were employed for in vivo examination. Results PEG-Lipo and PEG-ACGs-Lipo had similar diameters. At a low-threshold dose (12 mg/kg equivalent phospholipids), PEG-Lipo was mainly distributed in the liver rather than in the tumor, with the relative tumor targeting index (RTTI) being ~ 0.38 at 72 h after administration. When over-threshold was administered (50 mg/kg or 80 mg/kg of equivalent phospholipids), a much higher and quicker drug accumulation in tumors and a much lower drug accumulation in the liver were observed, with the RTTI increasing to ~ 0.9. The in vivo antitumor study in 4T1 tumor-bearing mice showed that, compared to PEG-ACGs-Lipo alone (2.25 mg/kg phospholipids), the co-injection of a large dose of blank PEG-Lipo (50 mg/kg of phospholipids) significantly reduced the tumor volume of the mice by 22.6% (P < 0.05) and enhanced the RTTI from 0.41 to 1.34. The intravenous injection of a low drug loading content (LDLC) of liposomal ACGs (the same dose of ACGs at 50 mg/kg of equivalent phospholipids) achieved a similar tumor inhibition rate (TIR) to that of co-injection. In the U87 MG tumor-bearing mouse model, co-injection of the enhancer also significantly promoted the TIR (83.32% vs. 66.80%, P < 0.05) and survival time of PEG-ACGs-Lipo. Conclusion An over-threshold dosing strategy proved to be a simple and feasible way to enhance the tumor delivery and antitumor efficacy of nanomedicines and was benefited to benefit their clinical result, especially for liposomal drugs. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01349-1.
Collapse
Affiliation(s)
- Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Zhuo Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, People's Republic of China
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Hongwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, People's Republic of China
| | - Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
15
|
Sharaf NS, Shetta A, Elhalawani JE, Mamdouh W. Applying Box-Behnken Design for Formulation and Optimization of PLGA-Coffee Nanoparticles and Detecting Enhanced Antioxidant and Anticancer Activities. Polymers (Basel) 2021; 14:144. [PMID: 35012166 PMCID: PMC8747114 DOI: 10.3390/polym14010144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
In an attempt to prove biological activity enhancement upon particle size reduction to the nanoscale, coffee (Cf) was chosen to be formulated into poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) using the single emulsion-solvent evaporation (SE-SE) method via Box-Behnken Design (BBD) to study the impact of certain process and formulation parameters on the particle size and size homogeneity, surface stability and encapsulation efficiency (EE%). The coffee-loaded PLGA (PLGA-Cf) NPs were characterized by different methods to aid in selecting the optimum formulation conditions. The desirable physicochemical characteristics involved small particle sizes with an average of 318.60 ± 5.65 nm, uniformly distributed within a narrow range (PDI of 0.074 ± 0.015), with considerable stability (Zeta Potential of -20.50 ± 0.52 mV) and the highest EE% (85.92 ± 4.01%). The antioxidant and anticancer activities of plain PLGA NPs, pure Cf and the optimum PLGA-Cf NPs, were evaluated using 2,2-Diphenyl-1-picryl-hydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. As a result of nano-encapsulation, antioxidant activity was enhanced by 26.5%. Encapsulated Cf showed higher anticancer potency than pure Cf against different cancerous cell lines with an increase of 86.78%, 78.17%, 85.84% and 84.84% against MCF-7, A-549, HeLa and HepG-2, respectively. The in vitro release followed the Weibull release model with slow and biphasic release profile in both tested pH media, 7.4 and 5.5.
Collapse
Affiliation(s)
| | | | | | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (N.S.S.); (A.S.); (J.E.E.)
| |
Collapse
|