1
|
Zou X, He Y, Zhao Z, Li J, Qu H, Liu Z, Chen P, Ji J, Zhao H, Shu D, Luo C. Single-cell RNA-seq offer new insights into the cell fate decision of the primordial germ cells. Int J Biol Macromol 2025; 293:139136. [PMID: 39740725 DOI: 10.1016/j.ijbiomac.2024.139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/19/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network. Here, the results of single-cell RNA-seq indicated that the cell cycle drove cellular heterogeneity. The active populations engaged in PGC self-renewal and the characteristics of the aging cell fate have been identified. The active self-renewal populations presented a rising expression of DNA repair genes, couple with a high proportion of cells in G1/S phase and a low frequency of cells in G2 phase. Notably, Hippo, FoxO, AMPK and MAPK pathways are active within these populations. The combination of six activator or inhibitors, targeting these active pathways, resulted in a significantly higher proliferation rate of PGCs and an increased number of cells entering the G1 and S phases. Importantly, they greatly reduced the establishment time to a minimum of 26 days and increased the efficiency of male PGC line establishment to 59 % in FS medium. Our results provided several new insights into the PGCs.
Collapse
Affiliation(s)
- Xian Zou
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhua He
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhifeng Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianbo Li
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zijing Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haoyi Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dingming Shu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
2
|
Akbary Moghaddam V, Acharya S, Schwaiger-Haber M, Liao S, Jung WJ, Thyagarajan B, Shriver LP, Daw EW, Saccone NL, An P, Brent MR, Patti GJ, Province MA. Construction of Multi-Modal Transcriptome-Small Molecule Interaction Networks from High-Throughput Measurements to Study Human Complex Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634403. [PMID: 39896668 PMCID: PMC11785221 DOI: 10.1101/2025.01.22.634403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Small molecules (SMs) are integral to biological processes, influencing metabolism, homeostasis, and regulatory networks. Despite their importance, a significant knowledge gap exists regarding their downstream effects on biological pathways and gene expression, largely due to differences in scale, variability, and noise between untargeted metabolomics and sequencing-based technologies. To address these challenges, we developed a multi-omics framework comprising a machine learning-based protocol for data processing, a semi-supervised network inference approach, and network-guided analysis of complex traits. The ML protocol harmonized metabolomic, lipidomic, and transcriptomic data through batch correction, principal component analysis, and regression-based adjustments, enabling unbiased and effective integration. Building on this, we proposed a semi-supervised method to construct transcriptome-SM interaction networks (TSI-Nets) by selectively integrating SM profiles into gene-level networks using a meta-analytic approach that accounts for scale differences and missing data across omics layers. Benchmarking against three conventional unsupervised methods demonstrated the superiority of our approach in generating diverse, biologically relevant, and robust networks. While single-omics analyses identified 18 significant genes and 3 significant SMs associated with insulin sensitivity (IS), network-guided analysis revealed novel connections between these markers. The top-ranked module highlighted a cross-talk between fiber-degrading gut microbiota and immune regulatory pathways, inferred by the interaction of the protective SM, N-acetylglycine (NAG), with immune genes (FCER1A, HDC, MS4A2, and CPA3), linked to improved IS and reduced obesity and inflammation. Together, this framework offers a robust and scalable solution for multi-modal network inference and analysis, advancing SM pathway discovery and their implications for human health. Leveraging data from a population of thousands of individuals with extended longevity, the inferred TSI-Nets demonstrate generalizability across diverse conditions and complex traits. These networks are publicly available as a resource for the research community.
Collapse
Affiliation(s)
- Vaha Akbary Moghaddam
- Department of Genetics, School of Medicine, Washington University in St. Louis, MO, USA
| | - Sandeep Acharya
- Division of Computational & Data Sciences, McKelvey School of Engineering, Washington University in St. Louis, MO, USA
| | | | - Shu Liao
- Department of Computer Science & Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO, USA
| | - Wooseok J Jung
- Department of Computer Science & Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine & Pathology, School of Medicine, University of Minnesota, MN, USA
| | - Leah P Shriver
- Department of Chemistry, School of Arts & Sciences, Washington University in St. Louis, MO, USA
| | - E Warwick Daw
- Department of Genetics, School of Medicine, Washington University in St. Louis, MO, USA
| | - Nancy L Saccone
- Department of Genetics, School of Medicine, Washington University in St. Louis, MO, USA
| | - Ping An
- Department of Genetics, School of Medicine, Washington University in St. Louis, MO, USA
| | - Michael R Brent
- Department of Genetics, School of Medicine, Washington University in St. Louis, MO, USA
- Department of Computer Science & Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, School of Arts & Sciences, Washington University in St. Louis, MO, USA
| | - Michael A Province
- Department of Genetics, School of Medicine, Washington University in St. Louis, MO, USA
| |
Collapse
|
3
|
De Luca V, Giovannuzzi S, Capasso C, Supuran CT. Cloning, expression, and purification of an α-carbonic anhydrase from Toxoplasma gondii to unveil its kinetic parameters and anion inhibition profile. J Enzyme Inhib Med Chem 2024; 39:2346523. [PMID: 38847581 PMCID: PMC11163988 DOI: 10.1080/14756366.2024.2346523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024] Open
Abstract
Toxoplasmosis, induced by the intracellular parasite Toxoplasma gondii, holds considerable implications for global health. While treatment options primarily focusing on folate pathway enzymes have notable limitations, current research endeavours concentrate on pinpointing specific metabolic pathways vital for parasite survival. Carbonic anhydrases (CAs, EC 4.2.1.1) have emerged as potential drug targets due to their role in fundamental reactions critical for various protozoan metabolic processes. Within T. gondii, the Carbonic Anhydrase-Related Protein (TgCA_RP) plays a pivotal role in rhoptry biogenesis. Notably, α-CA (TcCA) from another protozoan, Trypanosoma cruzi, exhibited considerable susceptibility to classical CA inhibitors (CAIs) such as anions, sulphonamides, thiols, and hydroxamates. Here, the recombinant DNA technology was employed to synthesise and clone the identified gene in the T. gondii genome, which encodes an α-CA protein (Tg_CA), with the purpose of heterologously overexpressing its corresponding protein. Tg_CA kinetic constants were determined, and its inhibition patterns explored with inorganic metal-complexing compounds, which are relevant for rational compound design. The significance of this study lies in the potential development of innovative therapeutic strategies that disrupt the vital metabolic pathways crucial for T. gondii survival and virulence. This research may lead to the development of targeted treatments, offering new approaches to manage toxoplasmosis.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
De Luca V, Giovannuzzi S, Supuran CT, Capasso C. A comprehensive investigation of the anion inhibition profile of a β-carbonic anhydrase from Acinetobacter baumannii for crafting innovative antimicrobial treatments. J Enzyme Inhib Med Chem 2024; 39:2372731. [PMID: 39012078 PMCID: PMC467105 DOI: 10.1080/14756366.2024.2372731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the β-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| |
Collapse
|
5
|
Jaffaraghaei M, Ghafouri H, Vaziri B, Taheri M, Talebkhan Y, Heravi M, Parand M. Induction of heat shock protein expression in SP2/0 transgenic cells and its effect on the production of monoclonal antibodies. PLoS One 2024; 19:e0300702. [PMID: 38696377 PMCID: PMC11065310 DOI: 10.1371/journal.pone.0300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/04/2024] [Indexed: 05/04/2024] Open
Abstract
The objective of the current investigation was to evaluate the induction of heat shock proteins (HSPs) in SP2/0 transgenic cells and the effect of these proteins on the production of monoclonal antibodies (mAbs). The SP2/0 cell line expressing the PSG-026 antibody, a biosimilar candidate of golimumab, the culture parameters, and the target protein expression were not justified for industrial production and were used for the experiments. Paracetamol and heat shock were used as chemical and physical inducers of HSPs, respectively. The results showed that paracetamol and heat shock increased the expression of HSP70 and HSP27 at the mRNA and protein levels. The expression of HSPs was greater in paracetamol-treated cells than in heat shock-treated cells. Paracetamol treatment at concentrations above 0.5 mM significantly reduced cell viability and mAb expression. However, treatment with 0.25 mM paracetamol results in delayed cell death and increased mAb production. Heat shock treatment at 45°C for 30 minutes after enhanced mAb expression was applied after pre-treatment with paracetamol. In bioreactor cultures, pretreatment of cells with paracetamol improved cell viability and shortened the lag phase, resulting in increased cell density. The production of mAbs in paracetamol-treated cultures was markedly greater than that in the control. Analysis of protein quality and charge variants revealed no significant differences between paracetamol-treated and control cultures, indicating that the induction of HSPs did not affect protein aggregation or charge variants. These findings suggest that inducing and manipulating HSP expression can be a valuable strategy for improving recombinant protein production in biopharmaceutical processes.
Collapse
Affiliation(s)
- Morteza Jaffaraghaei
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansooreh Heravi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Parand
- Department of Research and Development, PersisgenPar, Tehran, Iran
| |
Collapse
|
6
|
Zarei S, Ghafouri H, Vahdatiraad L, Moghaddam VA, Sohrabi T, Heidari B. Using heat shock protein (HSP) inducers as an approach to increase the viability of sterlet (Pisces; Acipenseridae; Acipenser ruthenus) cells against environmental diazinon toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133194. [PMID: 38086298 DOI: 10.1016/j.jhazmat.2023.133194] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Diazinon (DZN) is an organophosphate pesticide frequently used in agriculture and released into aquatic environments. In this study, sterlet sturgeon cells were exposed to DZN to investigate possible defense mechanisms via HSP induction (HSPi). Liver, kidney, and gill cells of Acipenser ruthenus were isolated and cultured and then treated with HSPi (Pro-Tex®, amygdalin, and a novel pirano-piranazole-based synthesized compound: SZ) in the presence and absence of DZN. MTT assays were used to evaluate the effects of different HSPis and their combinations with DZN. Western blotting analysis was conducted to evaluate HSP27, HSP70, and HSP90 expression patterns in each group. The highest rates of caspase-3 and caspase-8 activities were found in the DZN group, whereas HSPi treatment resulted in the lowest rates. The combination of HSPi+DZN resulted in increased HSP levels and antioxidant parameters but decreased cortisol, immune parameters, and metabolic enzymes. Many of the studied parameters (caspases, acetylcholinesterase, antioxidant, immune, and metabolic parameters) showed significant correlations with HSP expression, indicating that HSPs may be associated with markers of sterlet cell health. The results of this study demonstrate that using HSP inducers may be a powerful and reliable way to increase A. ruthenus resistance prior to exposure to DZN.
Collapse
Affiliation(s)
- Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Leila Vahdatiraad
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | | | - Tooraj Sohrabi
- International Sturgeon Research Institute, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Organization (AREEO), Tehran, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
7
|
Zarei S, Ghafouri H, Vahdatiraad L, Heidari B, Sohrabi T. Enhancing resistance and cell survival in Acipenser ruthenus liver, gill, and kidney cells: The potential of heat shock protein inducers against PAH-benzo[a]pyrene stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9445-9460. [PMID: 38191735 DOI: 10.1007/s11356-024-31884-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The Caspian Sea has faced many environmental challenges, such as oil pollution. Heat shock proteins (HSPs) play a critical role in stress conditions and physiological changes caused by disease or injury. By evaluating the effects of various HSP inducers (HSPi), including Pro-Tex® (NOP: 800 mM), amygdalin (AMG: 80 mM), and a novel synthetic compound derived from pirano piranazole (SZ: 80 µm) on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) treated with 75% IC50 PAH-benzo[a]pyrene (BaP; B75). This study examines whether there is a correlation between exposure to the BaP pollutant and HSPs in fish. In vitro, after culturing cells from the liver, kidney, and gills, they were treated with HSPi compounds in the presence and absence of BaP. Western blotting was used to assess HSP27, HSP70, and HSP90 expression patterns. A variety of enzyme activities were measured before (without treatment) and after treatment with HSPis and HSPi + B75, including cytochrome P450 (CYP450) activity, specific enzyme activity for acetylcholinesterase (AChE), antioxidant capacity, liver indicator enzymes, cortisol levels, and immunity parameters. When compared to the control group, cells treated with B75 showed the lowest AChE enzyme activity (p < 0.0001). CYP450 activity was highest in group B75, while HSPi caused the opposite effect (p < 0.0001). HSPi + B75 increased HSP levels and antioxidant parameters while decreasing cortisol and liver indicator enzymes (p < 0.0001). HSPi may be a powerful and reliable method for enhancing the resistance of A. ruthenus to BaP stresses before exposure. Treating cells with HSP-inducing compounds, such as NOP, AMG, and SZ, can assist them in managing stress and increase HSP (27, 70, and 90) protein expression. Furthermore, the study findings suggest that HSPis can also mitigate the adverse effects of stress, ultimately increasing cell survival and resistance.
Collapse
Affiliation(s)
- Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- International Sturgeon Research Institute, Agricultural Research Education and Organization (AREEO), Iranian Fisheries Sciences Research Institute, Tehran, Iran
| |
Collapse
|
8
|
Vaickelionienė R, Petrikaitė V, Vaškevičienė I, Pavilonis A, Mickevičius V. Synthesis of novel sulphamethoxazole derivatives and exploration of their anticancer and antimicrobial properties. PLoS One 2023; 18:e0283289. [PMID: 36952512 PMCID: PMC10035904 DOI: 10.1371/journal.pone.0283289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
A series of new derivatives based on sulfamethoxazole were designed and synthesized in this study. The structures of the new compounds were confirmed based on a comprehensive characterization of spectral data by applied IR and 1H as well as 13C NMR spectroscopy. The prepared compounds were tested for their anticancer and antimicrobial properties. Hydrazone 16b demonstrated convincing anticancer effect against all tested cell cultures such as human prostate carcinoma PPC-1 and human kidney carcinoma CaKi-1 cell lines, and human fibroblasts HF, n = 3. The most promising compound 16b showed higher activity against CaKi-1 cell line than the anticancer drugs axitinib and pazopanib used to treat renal cancer. Also, it was more active in the PPC-1 cell line compared to the approved PARP inhibitor Olaparib. Hydrazone 16b was also found to possess good antimicrobial properties against gram-positive bacteria strains of Staphylococcus aureus, Staphylococcus epidermidis, as well as Bacillus cereus.
Collapse
Affiliation(s)
- Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Irena Vaškevičienė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Kaunas, Lithuania
| | - Alvydas Pavilonis
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
9
|
Taheri M, Aslani S, Ghafouri H, Mohammadi A, Akbary Moghaddam V, Moradi N, Naeimi H. Synthesis, in vitro biological evaluation and molecular modelling of new 2-chloro-3-hydrazinopyrazine derivatives as potent acetylcholinesterase inhibitors on PC12 cells. BMC Chem 2022; 16:7. [PMID: 35193649 PMCID: PMC8864858 DOI: 10.1186/s13065-022-00799-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background The loss of cholinergic neurotransmission in Alzheimer's disease (AD) patients' brain is accompanied by a reduced concentration of Acetylcholine (ACh) within synaptic clefts. Thus, the use of acetylcholinesterase inhibitors (AChEIs) to block the cholinergic degradation of ACh is a promising approach for AD treatment. In the present study, a series of 2-chloro-3-hydrazinopyrazine derivatives (CHP1-5) were designed, synthesized, and biologically evaluated as potential multifunctional anti-AD agents. Methods In addition, the chemical structures and purity of the synthesized compounds were elucidated through using IR, 1H and 13C NMR, and elemental analyses. Further, the intended compounds were assessed in vitro for their AChE inhibitory and neuroprotective effects. Furthermore, DPPH, FRAP and ABTS assays were utilized to determine their antioxidant activity. The statistical analysis was performed using one-way ANOVA. Results Based on the results, CHP4 and CHP5 exhibited strong AChE inhibitory effects with the IC50 values of 3.76 and 4.2 µM compared to the donepezil (0.53 µM), respectively. The study examined the effect and molecular mechanism of CHP4 on the Ab1–42-induced cytotoxicity in differentiated PC12 cells. At concentrations of 0–100 μM, CHP4 was non-toxic in PC12. Additionally, Ab1–42 significantly stimulated tau hyperphosphorylation and induced differentiated PC12 cell death. Further, CHP4 resulted in diminishing the Ab1–42-induced toxicity in PC12 cell significantly. CHP4 at 30 μM concentration significantly increased the Ab1–42-induced HSP70 expression and decreased tau hyperphosphorylation. Conclusions According to the results of our studies CHP4 can be considered as safe and efficient AChEI and employed as a potential multifunctional anti-AD agent. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00799-w.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samira Aslani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran. .,Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Nastarn Moradi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hananeh Naeimi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
10
|
He HD, Zhang ZK, Tang HB, Xu YQ, Xu XB, Cao ZY, Xu H, Li Y. Manganese-mediated reductive N, N-dialkylation of nitroarenes: a dramatic NiI 2 effect. Org Chem Front 2022. [DOI: 10.1039/d2qo00928e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A dramatic NiI2 effect has been found for Mn-mediated reductive N,N-dialkylation of nitroaromatics.
Collapse
Affiliation(s)
- Hua-Dong He
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhi-Kai Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Hao-Bo Tang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiao-Bo Xu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Hao Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yang Li
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|