1
|
Leite JMDS, Oliveira ACDJ, Dourado D, Santana LMD, Medeiros TS, Nadvorny D, Silva MLR, Rolim-Neto PJ, Moreira DRM, Formiga FR, Soares MFDLR, Soares-Sobrinho JL. Rifampicin-loaded phthalated cashew gum nano-embedded microparticles intended for pulmonary administration. Int J Biol Macromol 2025; 303:140693. [PMID: 39914544 DOI: 10.1016/j.ijbiomac.2025.140693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Tuberculosis is a serious infectious disease commonly treated with rifampicin (RIF), which has low water solubility and high permeability. Polymeric nanoparticles (PNs) are used for controlled drug delivery to improve drug efficacy. However, PNs can be easily expelled via pulmonary administration. Nano-embedded microparticles (NEMs) are designed to bypass pulmonary barriers. Cashew gum, a versatile heteropolysaccharide, was modified into phthalated cashew gum (PCG), which targets alveolar macrophages, to increase hydrophobicity and improve drug encapsulation efficiency. In this study, the PCG was successfully obtained. Polymeric nanoparticle (PN)-PCG-RIF was fabricated, and its performance characteristics were investigated. PN-PCG-RIF exhibits mucoadhesive properties. An in vitro release study showed the release of 66.57 % of RIF after 6 h. An in vitro cytotoxicity study in A549 cells showed that PN-PCG-RIF is cytocompatible. The cellular uptake study demonstrated efficient cellular internalization in J774 macrophages, which was attributed to the PCG composition binding to the galactose-type lectin C receptor (MGL-2/CD301b). NEM-RIF was optimized by the Box Behnken designer with a particle size of 240.80 nm, PdI of 0.185, and redispersion index of 1.63. Scanning electron microscopy revealed NEMs-RIF in the form of spherical agglomerates. Collectively, RIF-NEMs were successfully developed from PN-PCG-RIF, having potential for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Joandra Maísa da Silva Leite
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Douglas Dourado
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Lucas Marinho de Santana
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thayse Silva Medeiros
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Daniela Nadvorny
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Pedro José Rolim-Neto
- Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Fábio Rocha Formiga
- Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420, Recife, PE, Brazil; Faculty of Medical Sciences, University of Pernambuco, 50100-130, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Center for Medicines and Related Products, Federal University of Pernambuco, Recife, PE, Brazil; Program of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
2
|
Silva TM, Oliveira ACDJ, Leão AD, Ramos RKLG, Chaves LL, Silva-Filho ECD, Soares MFDLR, Soares-Sobrinho JL. Cashew gum as future multipurpose biomacromolecules. Carbohydr Polym 2025; 347:122749. [PMID: 39486978 DOI: 10.1016/j.carbpol.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
The review highlights significant advances in delivery systems, with an emphasis on the use of cashew gum (CG), a natural polysaccharide extracted from Anacardium occidentale L., recognized for its remarkable biodegradability and versatility. CG has a wide range of applications spanning sectors such as food, pharmaceuticals, agriculture, and biotechnology. This study examines research focused on the extraction, purification, and chemical modifications of CG, as well as its combination with other biopolymers to enhance physicochemical and mechanical properties. These strategies aim to optimize the gum's characteristics, allowing for the creation of innovative materials with improved performance, expanding its potential applications. This review aims to provide a comprehensive overview of recent research trends, focusing on the utilization of CG as a polymeric component in the development of biomaterials with diverse applications.
Collapse
Affiliation(s)
- Tarcísio Mendes Silva
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Antônia Carla De Jesus Oliveira
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Amanda Damasceno Leão
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Renata Kelly Luna Gomes Ramos
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Luise Lopes Chaves
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | | | - Monica Felts de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - José Lamartine Soares-Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil.
| |
Collapse
|
3
|
Chaves LS, Oliveira ACP, Pinho SS, Sousa GC, Oliveira AP, Lopes ALF, Pacheco G, Nolêto IRSG, Nicolau LAD, Ribeiro FOS, Sombra VG, Araújo TDS, Leite JRSA, Alves EHP, Vasconcelos DFP, Filho JDBM, Paula RCM, Silva DA, Medeiros JVR. Gastroprotective activity and physicochemical analysis of carboxymethylated gum from Anadenanthera colubrina. Int J Biol Macromol 2024; 260:129397. [PMID: 38219933 DOI: 10.1016/j.ijbiomac.2024.129397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Biotechnological advancements require the physicochemical alteration of molecules to enhance their biological efficacy for the effective treatment of gastric ulcers. The study aimed to produce a polyelectrolytic compound from red angico gum (AG) by carboxymethylation, evaluate its physicochemical characteristics and investigate gastric protection against ethanol-induced ulcers. AG and carboxymethylated angico gum (CAG) were characterized by Fourier transform infrared spectroscopy, determination of the degree of substitution and gel permeation chromatography (GPC) and 13C NMR techniques. The results demonstrated that the modification of the polymer was satisfactory, presenting conformational changes e improving the interaction with the gastric mucosa. AG and CAG reduced macroscopic and microscopic damage such as edema, hemorrhage and cell loss caused by exposure of the mucosa to alcohol. Both demonstrated antioxidant activity in vitro, and in vivo, pretreatment with gums led to the restoration of superoxide dismutase and glutathione levels compared to the injured group. Concurrently, the levels of malondialdehyde and nitrite decreased. Atomic force microscopy showed that CAG presented better conformational properties of affinity and protection with the gastric mucosa compared to AG in the acidic pH. Based on our findings, it is suggested that this compound holds promise as a prospective product for future biotechnological applications.
Collapse
Affiliation(s)
- Letícia S Chaves
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antonio C P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Samara S Pinho
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabrielle C Sousa
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ana P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - André L F Lopes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabriella Pacheco
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isabela R S G Nolêto
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Lucas A D Nicolau
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio O S Ribeiro
- Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasília, Brasília, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Venicios G Sombra
- University of International Integration of Afro-Brazilian Lusophony (UNILAB), Redenção, Ceará, Brazil
| | - Thais D S Araújo
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - José R S A Leite
- Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasília, Brasília, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Even H P Alves
- Laboratory of Analysis and Histological Processing (LAPHIS), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Daniel F P Vasconcelos
- Laboratory of Analysis and Histological Processing (LAPHIS), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - José D B M Filho
- Laboratory of Culture Cells Delta (LCCDelta), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Regina C M Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Jand V R Medeiros
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
4
|
de Sousa Ferreira M, de Oliveira Silva Ribeiro F, Dourado FF, de Jesus Oliveira AC, Araújo TDS, Brito LM, Pessoa C, de Lima LRM, de Paula RCM, Silva-Filho EC, da Silva DA. Production of galactan phthalates derivatives extracted from Gracilaria birdie: Characterization, cytotoxic and antioxidant profile. Int J Biol Macromol 2023; 243:125254. [PMID: 37295699 DOI: 10.1016/j.ijbiomac.2023.125254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The present work explores the esterification reaction in the polysaccharide extracted from the seaweed Gracilaria birdiae and investigates its antioxidant potential. The reaction process was conducted with phthalic anhydride at different reaction times (10, 20 and 30 min), using a molar ratio of 1:2 (polymer: phthalic anhydride). Derivatives were characterized by FTIR, TGA, DSC and XRD. The biological properties of derivatives were investigated by assays of cytotoxicity and antioxidant activity (2,2-diphenyl-1-picrylhydroxyl - DPPH and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt - ABTS). The results obtained by FT-IR confirmed the chemical modification, there was a reduction related to the presence of carbonyl and hydroxyl groups when compared to the in nature polysaccharide spectrum. TGA analysis showed a change in the thermal behavior of the modified materials. X-ray diffraction, it was shown that the in nature polysaccharide appeared as an amorphous material, while the material obtained after the chemical modification process had increased crystallinity, due to the introduction of phthalate groups. For the biological assays, it was observed that the phthalate derivative was more selective than the unmodified material for the murine metastatic melanoma tumor cell line (B16F10), revealing a good antioxidant profile for DPPH and ABTS radicals.
Collapse
Affiliation(s)
- Michelle de Sousa Ferreira
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Fábio de Oliveira Silva Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasilia, Brasilia, Brazil
| | - Flaviane França Dourado
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Antônia Carla de Jesus Oliveira
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Thaís Danyelle Santos Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Lucas Moreira Brito
- Department of Physiology and Pharmacology, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | | | | | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaíba Delta Federal University, UFDPar, Parnaíba, PI, Brazil; Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil.
| |
Collapse
|
5
|
Lopes WC, Brito FM, Neto FE, Araújo AR, Leite RC, Viana VGF, Silva-Filho EC, Silva DA. Development of a New Clay-Based Aerogel Composite from Ball Clay from Piauí, Brazil and Polysaccharides. Polymers (Basel) 2023; 15:polym15112412. [PMID: 37299211 DOI: 10.3390/polym15112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023] Open
Abstract
The incorporation of polymeric components into aerogels based on clay produces a significant improvement in the physical and thermal properties of the aerogels. In this study, clay-based aerogels were produced from a ball clay by incorporation of angico gum and sodium alginate using a simple, ecologically acceptable mixing method and freeze-drying. The compression test showed a low density of spongy material. In addition, both the compressive strength and the Young's modulus of elasticity of the aerogels showed a progression associated to the decrease in pH. The microstructural characteristics of the aerogels were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The chemical structure was studied by infrared spectroscopy with Fourier transform (FTIR). The TGA curves from a non-oxidizing atmosphere indicated that the clay had a mass loss of 9% above 500 °C and that due to the presence of polysaccharides, the aerogels presented a decomposition of 20% at temperatures above 260 °C. The DSC curves of the aerogels demonstrated a displacement in higher temperatures. In conclusion, the results showed that aerogels of ball clay with the incorporation of polysaccharides, which are still minimally studied, have potential application as thermal insulation considering the mechanical and thermal results obtained.
Collapse
Affiliation(s)
- Wilton C Lopes
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| | - Francisco M Brito
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| | - Francisco E Neto
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| | - Alyne R Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| | - Rodolpho C Leite
- Postgraduate Program in Materials Engineering, Federal Institute of Piaui (IFPI), Campus Teresina Central, Teresina 64001-270, PI, Brazil
| | - Vicente G Freitas Viana
- Postgraduate Program in Materials Engineering, Federal Institute of Piaui (IFPI), Campus Teresina Central, Teresina 64001-270, PI, Brazil
| | - Edson C Silva-Filho
- LIMAV, Interdisciplinary Laboratory of Advanced Materials, Piauí Federal University, Teresina 64049-550, PI, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, São Sebastião Avenue, Parnaíba 64202-020, PI, Brazil
| |
Collapse
|
6
|
Oliveira RWG, de Oliveira JM, da Paz FB, Muniz EC, de Moura EM, Costa JCS, do Nascimento MO, Carvalho ALM, Pinheiro IM, Mendes AN, Filgueiras LA, de Souza PR, de Moura CVR. Films composed of white angico gum and chitosan containing chlorhexidine as an antimicrobial agent. Int J Biol Macromol 2023; 235:123905. [PMID: 36870650 DOI: 10.1016/j.ijbiomac.2023.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Anadenanthera colubrina, popularly known as white angico, is a species extensively cultivated in Brazil, mainly in the cerrado region, including the state of Piauí. This study examines the development of films composed of white angico gum (WAG) and chitosan (CHI) and containing chlorhexidine (CHX), an antimicrobial agent. The solvent casting method was used to prepare films. Different combinations and concentrations of WAG and CHI were used to obtain films with good physicochemical characteristics. Properties such as the in vitro swelling ratio, the disintegration time, folding endurance, and the drug content were determined. The selected formulations were characterised by scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the CHX release time and antimicrobial activity were evaluated. CHX showed a homogenous distribution in all CHI/WAG film formulations. The optimised films showed good physicochemical properties with 80% CHX release over 26 h, which is considered promising for local treatment of severe lesions in the mouth. Cytotoxicity tests of the films did not show toxicity. The antimicrobial and antifungal effects were very effective against the tested microorganisms.
Collapse
Affiliation(s)
| | | | | | - Edvani Curti Muniz
- Department of Chemistry, Federal University of Piauí, 64049-550, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Oliveira ACDJ, Silva EB, Oliveira TCD, Ribeiro FDOS, Nadvorny D, Oliveira JWDF, Borrego-Sánchez A, Rodrigues KADF, Silva MS, Rolim-Neto PJ, Viseras C, Silva-Filho EC, Silva DAD, Chaves LL, Soares MFDLR, Soares-Sobrinho JL. pH-responsive phthalate cashew gum nanoparticles for improving drugs delivery and anti-Trypanosoma cruzi efficacy. Int J Biol Macromol 2023; 230:123272. [PMID: 36649864 DOI: 10.1016/j.ijbiomac.2023.123272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.
Collapse
Affiliation(s)
- Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Emilliany Bárbara Silva
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thaisa Cardoso de Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Daniella Nadvorny
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Pedro José Rolim-Neto
- Laboratory of Technology of Medicines - LTM, Federal University of Pernambuco, Recife, Brazil
| | - César Viseras
- Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology - BIOTEC, Federal University of Delta of Parnaiba, Parnaiba, PI, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
8
|
Leite YKDC, Oliveira ACDJ, Quelemes PV, Neto NMA, de Carvalho CES, Soares Rodrigues HW, Alves MMDM, Carvalho FADA, Arcanjo DDR, da Silva-Filho EC, Durazzo A, Lucarini M, de Carvalho MAM, da Silva DA, Leite JRDSDA. Novel Scaffold Based on Chitosan Hydrogels/Phthalated Cashew Gum for Supporting Human Dental Pulp Stem Cells. Pharmaceuticals (Basel) 2023; 16:266. [PMID: 37259411 PMCID: PMC9960865 DOI: 10.3390/ph16020266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are structures that have value for application in the area of tissue engineering because they mimic the extracellular matrix. Naturally obtained polysaccharides, such as chitosan (CH) and cashew gum, are materials with the ability to form polymeric networks due to their physicochemical properties. This research aimed to develop a scaffold based on chitosan and phthalated cashew tree gum and test it as a support for the growth of human mesenchymal stem cells. In this study, phthalation in cashew gum (PCG) was performed by using a solvent-free route. PCG-CH scaffold was developed by polyelectrolyte complexation, and its ability to support adherent stem cell growth was evaluated. The scaffold showed a high swelling rate. The pore sizes of the scaffold were analyzed by scanning electron microscopy. Human dental pulp stem cells (hDPSCs) were isolated, expanded, and characterized for their potential to differentiate into mesenchymal lineages and for their immunophenotypic profile. Isolated mesenchymal stem cells presented fibroblastoid morphology, plastic adhesion capacity, and differentiation in osteogenic, adipogenic, and chondrogenic lineages. Mesenchymal stem cells were cultured in scaffolds to assess cell adhesion and growth. The cells seeded on the scaffold showed typical morphology, attachment, and adequate distribution inside the matrix pores. Thus, cells seeded in the scaffold may improve the osteoinductive and osteoconductive properties of these biomaterials.
Collapse
Affiliation(s)
- Yulla Klinger de Carvalho Leite
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Antônia Carla de Jesus Oliveira
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta of Parnaiba, UFDPar, Parnaiba 64202-020, PI, Brazil
| | - Patrick Veras Quelemes
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta of Parnaiba, UFDPar, Parnaiba 64202-020, PI, Brazil
| | - Napoleão Martins Argolo Neto
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Camila Ernanda Sousa de Carvalho
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Huanna Waleska Soares Rodrigues
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Michel Muálem de Moraes Alves
- Department of Veterinary Morphophysiology, Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
- Laboratory of Antileishmania Activity, Medicinal Plants Research Center, Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Fernando Aécio de Amorim Carvalho
- Laboratory of Antileishmania Activity, Medicinal Plants Research Center, Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Antileishmania Activity, Medicinal Plants Research Center, Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Edson Cavalcanti da Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Maria Acelina Martins de Carvalho
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta of Parnaiba, UFDPar, Parnaiba 64202-020, PI, Brazil
| | - José Roberto de Souza de Almeida Leite
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta of Parnaiba, UFDPar, Parnaiba 64202-020, PI, Brazil
- Area Morphology, Faculty of Medicine, University of Brasília (UnB), Campus Darcy Ribeiro, Brasília 70910-900, DF, Brazil
| |
Collapse
|