1
|
Wang S, Chen Y, Du J, Wang Z, Lin Z, Hong G, Qu D, Shen Y, Li L. Post-mortem genetic analysis of sudden unexplained death in a young cohort: a whole-exome sequencing study. Int J Legal Med 2023; 137:1661-1670. [PMID: 37624372 DOI: 10.1007/s00414-023-03075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Sudden unexplained death (SUD) constitutes a considerable portion of unexpected sudden death in the young. Molecular autopsy has proved to be an efficient diagnostic tool in the multidisciplinary management of SUD. Yet, many cases remain undiagnosed using the widely adopted targeted genetic screening strategies. Here, we investigated the genetic substrates of a young SUD cohort (18-40 years old) from China using whole-exome sequencing (WES), with the primary aim to identify novel SUD susceptibility genes. Within 255 previously acknowledged SUD-associated genes, 21 variants with likely functional effects (pathogenic/likely pathogenic) were identified in 51.9% of the SUD cases. More importantly, a set of 33 candidate genes associated with myopathy were identified to be novel susceptibility genes for SUD. Comparative analysis of the cumulative PHRED-scaled CADD score and polygenetic burden score showed that the amount and deleteriousness of variants in the 255 SUD-associated genes and the 33 candidate genes identified by this study were significantly higher compared with 289 randomly selected genes. A significantly higher genetic burden of rare variants (MAF < 0.1%) in the 33 candidate genes also highlighted putative roles of these genes in SUD. After incorporating these novel genes, the genetic testing yields of the current SUD cohort elevated from 51.9 to 66.7%. Our study expands understanding of the genetic variants underlying SUD and presents insights that improve the utility of genetic screenings.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Yongsheng Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Jianghua Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Zhimin Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Guanghui Hong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Dong Qu
- Institute of Legal Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
2
|
Sławski J, Szewczyk S, Burdziński G, Gibasiewicz K, Grzyb J. Time-resolved absorption measurements quantify the competition of energy and electron transfer between quantum dots and cytochrome c. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122627. [PMID: 36963219 DOI: 10.1016/j.saa.2023.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
We applied transient absorption spectroscopy to study the early photodynamics in a system composed of CdTe quantum dots (QDs) and cytochrome c (Cyt c) protein. In the QDs and Cyt c mixtures, about 25 % of the excited QD electrons quickly relax (∼23 ps) to the ground state and roughly 75 % decay on slower time scale - mostly due to quenching by Cyt c. On the basis of the assumed model, we estimated the contribution of electron transfer and other mechanisms to this quenching. The primary quenching mechanism is probably energy transfer but electron transfer makes a significant contribution (∼8 %), resulting in photoreduction of Cyt c. The lifetime of one fraction of reduced Cyt c (35-90 %) is ∼ 1 ms and the lifetime of the remaining fraction was longer than the ∼ 50-ms time window of the experiment. We speculate that, in the former fraction, the back electron transfer from the reduced Cyt c to QDs occurs and the latter fraction of Cyt c is stably reduced.
Collapse
Affiliation(s)
- Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | - Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Gotard Burdziński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Karmakar S, Ghosh T, Sankhla A, Bhattacharjee S, Katiyar V. Insulin biomolecular condensate formed in ionic microenvironment modulates the structural properties of pristine and magnetic cellulosic nanomaterials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
A novel IONP-decorated two-dimensional [Zn2+]:[Insulin] nanosheet with ordered array of surface channels and cellular uptake potential. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|