1
|
Kumar S, Arora A, Mathur D, Chaudhary A, Pant V, Guchhait S, Singh BK. A review on chitosan and chitosan-based bionanocomposites: Promising biological macromolecules for sustainable corrosion inhibition. Int J Biol Macromol 2025; 301:140392. [PMID: 39880227 DOI: 10.1016/j.ijbiomac.2025.140392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Corrosion is a significant issue affecting industrial metal surfaces, resulting in material degradation, economic losses, and safety concerns. This review comprehensively examines chitosan and its nano and bionanocomposite forms as sustainable, eco-friendly corrosion inhibitors, emphasizing key innovations in their development and application. The article highlights chitosan's ability to form protective films, which inhibit corrosion by creating a barrier on metal surfaces. A key advancement explored is the incorporation of chitosan nanoparticles, which significantly improve corrosion resistance due to their enhanced surface area, increased adhesion properties, and improved mechanical strength. Another innovative aspect is the synergistic effect of combining chitosan with other nanoparticles or inhibitors, resulting in superior corrosion protection and enhanced barrier properties. The review also addresses the chemical modifications of chitosan to overcome challenges such as poor solubility, mechanical weakness, and chemical instability in harsh environments. A novel contribution of this article is the focus on scalable, cost-effective production methods for chitosan-based bionanocomposites, facilitating their industrial application. This review provides a comprehensive summary of literature reports, offering valuable insights into the latest research advancements and highlights future prospects for chitosan-based materials as eco-friendly, high-performance corrosion inhibitors in diverse industrial settings.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, India.
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Vaishali Pant
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, India
| | - Shramana Guchhait
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Hao T, Xu K, Zheng X, Yao X, Li J, Yu Y, Liu Z. Hydrogen inhibition of wet AlLi alloy dust collector systems using a composite green biopolymer inhibitor based on chitosan/sodium alginate: Experimental and theoretical studies. Int J Biol Macromol 2024; 278:134708. [PMID: 39151867 DOI: 10.1016/j.ijbiomac.2024.134708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Aluminum‑lithium (AlLi) alloy polishing and grinding processes in wet dust collector systems could cause hydrogen fire and explosion. From the fundamental perspective of preventing hydrogen explosions, a safe, nontoxic, and sustainable modified green hydrogen inhibitor based on chitosan (CS) and sodium alginate (SA) was developed in this study and was used as a hydrogen evolution inhibitor for the processing of waste dust from AlLi alloys. The structure and elemental distribution of the synthesized material were characterized through characterization experiments. Hydrogen evolution experiments and a hydrolysis kinetic model were used to explore the inhibitory effect of modified CS/SA on AlLi alloy dust, and the results revealed that the inhibitory concentration of the hydrogen explosion lower limit was 0.40 wt%, with an inhibition efficiency of 91.93 %, indicating an 11.88-61.44 % improvement over that of CS and SA. As the inhibitor concentration increased and the temperature decreased, the hydrogen inhibition effect increased. Characterization experiments and density functional theory showed that CS/SA primarily formed a dense physical protective barrier on the dust surface through chemical adsorption and complexation reactions, interrupting the hydrogen evolution reaction between the metal and water. This study introduces a novel green modified hydrogen inhibitor that fundamentally addresses hydrogen generation and explosion.
Collapse
Affiliation(s)
- Tengteng Hao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Kaili Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Zheng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiwen Yao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Jishuo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yanwu Yu
- School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, China
| | - Zhenhua Liu
- School of Architecture and Environmental Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China
| |
Collapse
|
3
|
Qi J, Zhang J, Jia H, Guo X, Yue Y, Yuan Y, Yue T. Synthesis of silver/Fe 3O 4@chitosan@polyvinyl alcohol magnetic nanoparticles as an antibacterial agent for accelerating wound healing. Int J Biol Macromol 2022; 221:1404-1414. [PMID: 36089089 DOI: 10.1016/j.ijbiomac.2022.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Bacterial infection causes wound inflammation and slows wound healing, posing a great threat to human health, which needs to explore more antibacterial nanobiomaterials to promote wound healing. Therefore, this study was conducted to develop low-cost silver/Fe3O4@Chitosan@polyvinyl alcohol (Ag/Fe3O4@CS@PVA) via a one-pot method to promote healing in bacteria-infected wounds. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) confirmed that Ag/Fe3O4@CS@PVA was successfully prepared. In vitro antibacterial experiments demonstrated strong antibacterial activity of Ag/Fe3O4@CS@PVA against Escherichia coli and Staphylococcus aureus. The Ag/Fe3O4@CS@PVA destroyed the bacterial cell membrane or internal structure, thus resulting in cell death for antibacterial effects. Cytotoxicity and hemolysis rate tests showed that Ag/Fe3O4@CS@PVA posed fine biocompatibility. In addition, in vivo assays confirmed that Ag/Fe3O4@CS@PVA not only promoted the healing of wound infection caused by bacteria, but also had no toxic effect on mouse organs. Therefore, the low-cost Ag/Fe3O4@CS@PVA nanocomposites have great potential in controlling 'bacterial' pathogen.
Collapse
Affiliation(s)
- Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Xinyuan Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- Xi'an GaoXin No.1 High School, Xi'an 710119, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Techonology, Northwest University, Xi'an 710069, China.
| |
Collapse
|