1
|
Hoang T, Nguyen DL, Kim B, Choi W, Cho SM, Kim HW, Han SJ, Kim K, Lee JH, Do H. Ice affinity purification system for recombinant proteins using a DUF3494 ice-binding protein. Int J Biol Macromol 2025; 315:144378. [PMID: 40398755 DOI: 10.1016/j.ijbiomac.2025.144378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
Protein purification is essential for the isolation of specific proteins from mixtures. Conventional affinity tags have advanced recombinant protein purification. However, their reliance on costly resins and complex procedures often limits scalability and affordability. In this study, we identified three ice-binding domains (CoIBD1, CoIBD2, and CoIBD3) in Candidatus Cryosericum odellii SMC5 to evaluate their potential as protein purification tags. These domains exhibited hyperactive ice-binding properties, including high thermal hysteresis and ice recrystallization inhibition activities; additionally, they bound to multiple ice planes, enabling efficient attachment to ice surfaces. Through sequence and structural analyses, we engineered an enhanced variant that retained these ice-binding traits while achieving improved thermal and chemical stability: eCoIBD1. We then used eCoIBD1 as a fusion tag to develop the Ice Affinity Purification (IAP) system and evaluated its performance with GFP as a model protein. The IAP system achieved 87 % purity after two purification rounds, recovering 29 % of the initial protein from the crude extract. Consistent performance was observed in the presence of additives such as dithiothreitol and glycerol. The IAP system provides a cost-effective, environmentally friendly alternative to traditional methods by leveraging ice as a renewable binding medium, thereby eliminating the need for expensive resins or regeneration steps.
Collapse
Affiliation(s)
- Trang Hoang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Dieu Linh Nguyen
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Bomi Kim
- Division of Earth Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Woong Choi
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sung Mi Cho
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Han-Woo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Se Jong Han
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Kitae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Division of Earth Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| | - Hackwon Do
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| |
Collapse
|
2
|
Zielkiewicz J. Solvation of molecules from the family of "domain of unknown function" 3494 and their ability to bind to ice. J Chem Phys 2024; 161:165101. [PMID: 39435831 DOI: 10.1063/5.0222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
In 2012, the molecular structure of a new, broad class of ice-binding proteins, classified as "domain of unknown function" (DUF) 3494, was described for the first time. These proteins have a common tertiary structure and are characterized by a very wide spectrum of antifreeze activity (from weakly active to hyperactive). The ice-binding surface (IBS) region of these molecules differs significantly in its structure from the IBS of previously known antifreeze proteins (AFPs), showing a complete lack of regularity and high hydrophilicity. The presence of a regular, repeating structural motif in the IBS region of hitherto known AFP molecules, combined with the hydrophobic nature of this surface, promotes the formation of an ice-like ordering of the solvation water layer and, as a result, facilitates the process of transformation of this water layer into ice. It is, therefore, surprising that the newly discovered DUF3494 class of proteins clearly breaks out of this characteristic. In this paper, using molecular dynamics simulations, we analyze the solvation water structure of the IBS region of both DUF3494 family molecules and AFPs. As we show, although the IBS of DUF3494 molecules does not form an ice-like water structure in the solvation layer, this is compensated by the formation of the equivalent of "anchored clathrate water," in the form of a relatively large number of water molecules bound to the surface of the protein molecule and providing potential binding sites for it to the ice surface.
Collapse
Affiliation(s)
- Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
3
|
Nam Y, Nguyen DL, Hoang T, Kim B, Lee JH, Do H. Engineered ice-binding protein (FfIBP) shows increased stability and resistance to thermal and chemical denaturation compared to the wildtype. Sci Rep 2024; 14:3234. [PMID: 38331970 PMCID: PMC10853241 DOI: 10.1038/s41598-024-53864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Many polar organisms produce antifreeze proteins (AFPs) and ice-binding proteins (IBPs) to protect themselves from ice formation. As IBPs protect cells and organisms, the potential of IBPs as natural or biological cryoprotective agents (CPAs) for the cryopreservation of animal cells, such as oocytes and sperm, has been explored to increase the recovery rate after freezing-thawing. However, only a few IBPs have shown success in cryopreservation, possibly because of the presence of protein denaturants, such as dimethyl sulfoxide, alcohols, or ethylene glycol, in freezing buffer conditions, rendering the IBPs inactive. Therefore, we investigated the thermal and chemical stability of FfIBP isolated from Antarctic bacteria to assess its suitability as a protein-based impermeable cryoprotectant. A molecular dynamics (MD) simulation identified and generated stability-enhanced mutants (FfIBP_CC1). The results indicated that FfIBP_CC1 displayed enhanced resistance to denaturation at elevated temperatures and chemical concentrations, compared to wildtype FfIBP, and was functional in known CPAs while retaining ice-binding properties. Given that FfIBP shares an overall structure similar to DUF3494 IBPs, which are recognized as the most widespread IBP family, these findings provide important structural information on thermal and chemical stability, which could potentially be applied to other DUF3494 IBPs for future protein engineering.
Collapse
Affiliation(s)
- Yewon Nam
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Dieu Linh Nguyen
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Trang Hoang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Bogeun Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
4
|
Pal P, Aich R, Chakraborty S, Jana B. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15132-15144. [PMID: 36450094 DOI: 10.1021/acs.langmuir.2c02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The molecular mechanism behind the ice growth inhibition by antifreeze proteins (AFPs) is yet to be understood completely. Also, what physical parameters differentiate between the AFP and non-AFP are largely unknown. Thus, to get an atomistic overview of the differential antifreeze activities of different classes of AFPs, we have studied ice growth from different ice surfaces in the presence of a moderately active globular type III AFP and a hyperactive spruce budworm (sbw) AFP. Results are compared with the observations of ice growth simulations in the presence of topologically similar non-AFPs using all-atom molecular dynamics simulations. Simulation data suggest that the ice surface coverage is a critical factor in ice growth inhibition. Due to the presence of an ice binding surface (IBS), AFPs form a high affinity complex with ice, accompanied by a transition of hydration water around the IBS from clathrate-like to ice-like. Several residues around the periphery of the IBS anchor the AFP to the curved ice surface mediated by multiple strong hydrogen bonds, stabilizing the complex immensely. In the high surface coverage regime, the slow unbinding kinetics dominates over the ice growth kinetics and thus facilitates the ice growth inhibition. Due to the non-availability of a proper IBS, non-AFPs form a low-affinity complex with the growing ice surface. As a result, the non-AFPs are continuously repelled by the surface. If the concentration of AFPs is low, then the effective surface coverage is reduced significantly. In this low surface coverage regime, AFPs can also behave like impurities and are engulfed by the growing ice crystal.
Collapse
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Yang F, Jiang W, Chen X, Chen X, Wu J, Huang J, Cai X, Wang S. Identification of Novel Antifreeze Peptides from Takifugu obscurus Skin and Molecular Mechanism in Inhibiting Ice Crystal Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14148-14156. [PMID: 36314886 DOI: 10.1021/acs.jafc.2c04393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Foodborne hydrolyzed antifreeze peptides have been widely used in the food industry and the biomedical field. However, the components of hydrolyzed peptides are complex and the molecular mechanism remains unclear. This study focused on identification and mechanism analysis of novel antifreeze peptides from Takifugu obscurus skin by traditional methods and computer-assisted techniques. Results showed that three peptides (EGPRAGGAPG, GDAGPSGPAGPTG, and GEAGPAGPAG) possessed cryoprotection via reducing the freezing point and inhibiting ice crystal growth. Molecular docking confirmed that the cryoprotective property was related to peptide structure, especially α-helix, and hydrogen bond sites. Moreover, the antifreeze peptides were double-faces, which controlled ice crystals while affecting the arrangement of surrounding water molecules, thus exhibiting a strong antifreeze activity. This investigation deepens the comprehension of the mechanism of antifreeze peptides at molecular scale, and the novel efficient antifreeze peptides can be developed in antifreeze materials design and applied in food industry.
Collapse
Affiliation(s)
- Fujia Yang
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Wenting Jiang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Xuan Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen361022, P.R. China
- Fujian Anjoy Foods Co. Ltd., Xiamen361022, P.R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| |
Collapse
|