1
|
Ding W, Sun H, Li X, Li Y, Jia H, Luo Y, She D, Geng Z. Environmental applications of lignin-based hydrogels for Cu remediation in water and soil: adsorption mechanisms and passivation effects. ENVIRONMENTAL RESEARCH 2024; 250:118442. [PMID: 38368919 DOI: 10.1016/j.envres.2024.118442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Heavy metal pollution, particularly the excessive release of copper (Cu), is an urgent environmental concern. In this study, sodium lignosulfonate/carboxymethyl sa-son seed gum (SL-Cg-g-PAA) designed for remediation of Cu-contaminated water and soil was successfully synthesized through a free radical polymerization method using lignin as a raw material. This hydrogel exhibits remarkable Cu adsorption capability when applied to water, with a maximum adsorption capacity reaching 172.41 mg/g. Important adsorption mechanisms include surface complexation and electrostatic attraction between Cu(Ⅱ) and oxygen-containing functional groups (-OH, -COOH), as well as cation exchange involving -COONa and -SO3Na. Furthermore, SL/Cg-g-PAA effectively mitigated the bioavailability of heavy metals within soil matrices, as evidenced by a notable 14.1% reduction in DTPA extracted state Cu (DTPA-Cu) content in the S4 treatment (0.7% SL/Cg-g-PAA) compared to the control group. Concurrently, the Cu content in both the leaves and roots of pakchoi exhibited substantial decreases of 55.19% and 36.49%, respectively. These effects can be attributed to the precipitation and complexation reactions facilitated by the hydrogel. In summary, this composite hydrogel is highly promising for effective remediation of heavy metal pollution in water and soil, with a particular capability for the immobilization of Cu(Ⅱ) and reduction of its adverse effects on ecosystems.
Collapse
Affiliation(s)
- Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hao Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianzhen Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanyang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yanli Luo
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, China.
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
2
|
Tan YY, Abdul Raman AA, Zainal Abidin MII, Buthiyappan A. A review on sustainable management of biomass: physicochemical modification and its application for the removal of recalcitrant pollutants-challenges, opportunities, and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36492-36531. [PMID: 38748350 DOI: 10.1007/s11356-024-33375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Adsorption is one of the most efficient methods for remediating industrial recalcitrant wastewater due to its simple design and low investment cost. However, the conventional adsorbents used in adsorption have several limitations, including high cost, low removal rates, secondary waste generation, and low regeneration ability. Hence, the focus of the research has shifted to developing alternative low-cost green adsorbents from renewable resources such as biomass. In this regard, the recent progress in the modification of biomass-derived adsorbents, which are rich in cellulosic content, through a variety of techniques, including chemical, physical, and thermal processes, has been critically reviewed in this paper. In addition, the practical applications of raw and modified biomass-based adsorbents for the treatment of industrial wastewater are discussed extensively. In a nutshell, the adsorption mechanism, particularly for real wastewater, and the effects of various modifications on biomass-based adsorbents have yet to be thoroughly studied, despite the extensive research efforts devoted to their innovation. Therefore, this review provides insight into future research needed in wastewater treatment utilizing biomass-based adsorbents, as well as the possibility of commercializing biomass-based adsorbents into viable products.
Collapse
Affiliation(s)
- Yan Ying Tan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Izzudin Izzat Zainal Abidin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Liang H, Wu H, Fang W, Ma K, Zhao X, Geng Z, She D, Hu H. Two-stage hydrothermal oxygenation for efficient removal of Cr(VI) by starch-based polyporous carbon: Wastewater application and removal mechanism. Int J Biol Macromol 2024; 264:130812. [PMID: 38484806 DOI: 10.1016/j.ijbiomac.2024.130812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cr(VI) is of concern because of its high mobility and toxicity. In this work, a two-stage hydrothermal strategy was used to activate the O sites of starch, and by inserting K-ion into the pores, starch-based polyporous carbon (S-PC) adsorption sites was synthesized for removal of Cr(VI). Physicochemical characterization revealed that the O content of the S-PC reached 20.66 % after activation, indicating that S-PC has excellent potential for adsorption of Cr(VI). The S-PC removal rate for 100 mg/L Cr(VI) was 96.29 %, and the adsorption capacity was 883.86 mg/g. Moreover, S-PC showed excellent resistance to interference, and an equal concentration of hetero-ions reduced the activity by less than 5 %. After 8 cycles of factory wastewater treatment, the S-PC maintained 81.15 % of its original activity, which indicated the possibility of practical application. Characterization and model analyses showed that the removal of Cr(VI) from wastewater by the S-PC was due to CC, δ-OH, ν-OH, and C-O-C groups, and the synergistic effect of adsorption and reduction was the key to the performance. This study provides a good solution for treatment of Cr(VI) plant wastewater and provides a technical reference for the use of biological macromolecules such as starch in the treatment of heavy metals.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Wu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wendi Fang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyue Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Hongxiang Hu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Liang H, Ma K, Zhao X, Geng Z, She D, Hu H. Enhancement of Cr(VI) adsorption on lignin-based carbon materials by a two-step hydrothermal strategy: Performance and mechanism. Int J Biol Macromol 2023; 252:126432. [PMID: 37604414 DOI: 10.1016/j.ijbiomac.2023.126432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Cr(VI) is a carcinogenic heavy metal that forms an oxygen-containing anion, which is difficult to remove from water by adsorbents. Here, industrial alkali lignin was transformed into a Cr(VI) adsorbent (N-LC) by using a two-step hydrothermal strategy. The characterization results of the adsorbent showed that O and N were uniformly distributed on the surface of the adsorbent, resulting in a favorable morphology and structure. The Cr(VI) adsorption of N-LC was 13.50 times that of alkali lignin, and the maximum was 326.10 mg g-1, which confirmed the superiority of the two-step hydrothermal strategy. After 7 cycles, the adsorption of N-LC stabilized at approximately 62.18 %. In addition, in the presence of coexisting ions, N-LC showed a selective adsorption efficiency of 85.47 % for Cr(VI), which is sufficient to support its application to actual wastewaters. Model calculations and characterization showed that N and O groups were the main active factors in N-LC, and CO, -OH and pyridinic-N were the main active sites. This study provides a simple and efficient method for the treatment of heavy metals and the utilization of waste lignin, which is expected to be widely applied in the environmental, energy and chemical industries.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyue Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Diao She
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxiang Hu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Aloud SS, Alharbi HA, Hameed BH, Giesy JP, Almady SS, Alotaibi KD. Production of activated carbon from date palm stones by hydrothermal carbonization and microwave assisted KOH/NaOH mixture activation for dye adsorption. Sci Rep 2023; 13:19064. [PMID: 37925477 PMCID: PMC10625556 DOI: 10.1038/s41598-023-45864-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Date palm stones are regarded as possible alternatives to activated carbon (AC) precursors with high potential for various environmental applications. In this research study, date palm stones derived activated carbon (DPSAC) was used as adsorbent for removing toxic remazol brilliant blue R (RBBR). The synthesis of DPSAC involved a chemical treatment using KOH and NaOH (1:1). Characterization of DPSAC revealed that it exhibited a BET surface area of 715.30 m2/g, Langmuir surface area of 1061.93 m2/g, total pore volume of 0.39 cm3/g, and average pore diameter of 2.15 nm. Adsorption uptake of RBBR increased (from 24.54 to 248.54 mg/g), whereas the removal percentage decreased (from 98.16 to 82.85%) when the initial RBBR concentration increased (from 25 to 300 mg/L). The adsorption process performed best under acidic conditions (pH 3), with an RBBR uptake of 98.33 mg/g. Because of the high R2 values (0.9906 and 0.9779) and low average errors (6.24 and 13.95%), this adsorption process followed the Freundlich isotherm and pseudo-first-order (PFO) models, respectively. The Langmuir adsorption capacity (Qm) was 319.63 mg/g. Thermodynamic parameters were - 11.34 kJ/mol for ∆H° (exothermic in nature), 0.05 kJ/mol K for ∆S° (increasing randomness level at solid-liquid interface), - 27.37 kJ/mol for ∆G° (spontaneous), and 6.84 kJ/mol for Ea (controlled by physisorption).
Collapse
Affiliation(s)
- Saud S Aloud
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Hattan A Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Bassim H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - John P Giesy
- Department of Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX, 76798, USA
| | - Saad S Almady
- Agricultural Engineering Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khaled D Alotaibi
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Mengistu A, Abewaa M, Adino E, Gizachew E, Abdu J. The application of Rumex abyssinicus based activated carbon for Brilliant Blue Reactive dye adsorption from aqueous solution. BMC Chem 2023; 17:82. [PMID: 37464422 DOI: 10.1186/s13065-023-01004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
The environmental pollution and human health impacts associated with the discharge of massive dye-containing effluents necessitate a search for cost-effective treatment technology. Therefore, this research work is conducted with the objective of investigating the potential of Rumex abyssinicus-derived activated carbon (RAAC) for the adsorption of Brilliant Blue Reactive (BBR) dye from aqueous solutions. Chemical activation with H3PO4 followed by pyrolysis was used to prepare the adsorbent. Characterization of the developed adsorbent was done using proximate analysis, pH point of zero charge (pHpzc), scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), Brunauer, Emmett, and Teller (BET), and X-ray diffraction (XRD). The experimental design and the effect of independent variables including pH (2, 6, and 10), initial dye concentration (50, 100, and 150 mg/L), adsorbent dosage (0.05, 0.1, and 0.15 g/100 mL), and contact time (20, 50, and 80 min) were optimized using the response surface methodology (RSM) coupled with Box Behnken design (BBD). The analysis results revealed the exitance of high specific surface area of 524 m2/g, morphological cracks, and the presence of multiple functional groups like -OH, C=C, alkene, and amorphous structure. Maximum removal efficiency of 99.98% was attained at optimum working conditions of pH 2, contact time of 50 min, dye concentration of 100 mg/L, and adsorbent dosage of 0.15 mg/100 mL, reducing the pollutant concentration from 100 to 0.02 mg/L. Evaluation of the experimental data was done using Langmuir, Freundlich, Temkin, and Sips isotherm models, in which the Langmuir model was found to be the best fit with the experimental data at R2 0.986. This shows that the adsorbent surface is homogeneous and mono-layered. Furthermore, the kinetic study confirmed that the pseudo second-order model best describes the experimental data with R2 = 0.999. In general, the research work showed that the low cost, environmental friendliness and high adsorption capabilities of the activated carbon derived from Rumex abyssinicus could be taken as an effective nt for the removal of BBR dye from aqueous solutions.
Collapse
Affiliation(s)
- Ashagrie Mengistu
- The Federal Democratic Republic of Ethiopia, Manufacturing Industry Development Institute, P. O. BOX 1180, Addis Ababa, Ethiopia
| | - Mikiyas Abewaa
- Department of Chemical Engineering, College of Engineering and Technology, Wachemo University, P. O. Box 667, Hossana, Ethiopia.
| | - Eba Adino
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Ebisa Gizachew
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Jemal Abdu
- Department of Chemical Engineering, College of Engineering and Technology, Wachemo University, P. O. Box 667, Hossana, Ethiopia
| |
Collapse
|
7
|
Duran C, Ozeken ST, Camoglu AY, Ozdes D. Enhancement of adsorptive removal efficiency of an anionic dye from aqueous solutions using carboxylic acid-modified mulberry leaves: Artificial neural network modeling, isotherm, and kinetics evaluation. JOURNAL OF WATER AND HEALTH 2023; 21:869-883. [PMID: 37515559 PMCID: wh_2023_025 DOI: 10.2166/wh.2023.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Natural mulberry leaves and carboxylic acid-modified mulberry (Morus alba L.) leaves were used for the first time to scrutinize the effects of modification on the retention efficiency of an anionic dye (Remazol Brilliant Blue R (RBBR)) from aqueous solutions to suggest an economical and promising adsorbent for the treatment of dye-contaminated water. The characterization of the adsorbents was accomplished through common techniques including SEM, FTIR, and pHpzc determination. Several parameters studied in batch experiments pointed out that the initial pH of 2.0 and the contact time of 240 min were optimum conditions for all the developed RBBR uptake processes. An artificial neural network (ANN) model was applied to formulate a forecast model for the uptake efficiency of RBBR. The experimental data were assessed by different kinetic and isotherm models to explain the mechanism of the developed processes in more detail. Maximum monolayer adsorption capacities of natural mulberry leaves and acetic acid-, citric acid-, and oxalic acid-modified mulberry leaves were determined as 64.5, 95.2, 84.8, and 91.7 mg g-1, respectively, by the Langmuir isotherm model. These results demonstrated that the modification with carboxylic acids significantly increases the anionic dye adsorption capacity of the mulberry leaves.
Collapse
Affiliation(s)
- Celal Duran
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Türkiye E-mail:
| | - Sengul Tugba Ozeken
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Türkiye
| | - Aslihan Yilmaz Camoglu
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Türkiye
| | - Duygu Ozdes
- Gumushane Vocational School, Chemistry and Chemical Processing Technologies Department, Gumushane University, 29100 Gumushane, Türkiye
| |
Collapse
|
8
|
Zhang H, Liang H, Xing L, Ding W, Geng Z, Xu C. Cellulose-based slow-release nitrogen fertilizers: Synthesis, properties, and effects on pakchoi growth. Int J Biol Macromol 2023:125413. [PMID: 37327921 DOI: 10.1016/j.ijbiomac.2023.125413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The application of most slow-release fertilizers is limited by complex preparation processes and short slow-release periods. In this study, carbon spheres (CSs) were prepared by a hydrothermal method using cellulose as the raw material. Using CSs as the fertilizer carrier, three new carbon-based slow-release nitrogen fertilizers were prepared using direct mixing (SRF-M), water-soluble immersion adsorption (SRFS), and co-pyrolysis (SRFP) methods, respectively. Examination of the CSs revealed regular and ordered surface morphology, enrichment of functional groups on the surfaces, and good thermal stability. Elemental analysis showed that SRF-M was rich in nitrogen (total nitrogen content of 19.66 %). Soil-leaching tests showed that the total cumulative nitrogen release of SRF-M and SRF-S was 55.78 % and 62.98 %, respectively, which greatly slowed down the release of nitrogen. Pot experiment results revealed that SRF-M significantly promoted the growth of pakchoi and improved crop quality. Thus, SRF-M was more effective in practical applications than the other two slow-release fertilizers. Mechanistic studies showed that CN, -COOR, pyridine-N and pyrrolic-N participated in nitrogen release. This study thus provides a simple, effective, and economical method for the preparation of slow-release fertilizers, providing new directions for further research and the develop of new slow-release fertilizers.
Collapse
Affiliation(s)
- Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Libin Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
9
|
Liang H, Zhao X, Li N, Zhang H, Geng Z, She D. Three-dimensional lignin-based polyporous carbon@polypyrrole for efficient removal of reactive blue 19: A synergistic effect of the N and O groups. Int J Biol Macromol 2023; 239:124220. [PMID: 37001780 DOI: 10.1016/j.ijbiomac.2023.124220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Reactive blue 19 is one of the abundant carcinogens commonly used in industrial applications. This study transformed industrial lignin into a lignin-based polyporous carbon@polypyrrole (LPC@PPy) by a hydrothermal-activation-in situ polymerization strategy for removal of reactive blue 19. The hydrothermal reaction and polypyrrole polymerization provide abundant O and N groups, and the pore-making process promotes the even distribution of O and N groups in the 3D pore of LPC@PPy, which is favorable for the adsorption of reactive blue 19. The adsorption capacity of LPC@PPy for reactive blue 19 is 537.52 mg g-1, which is 2.04 times the performance of LPC (only hydrothermal and activation process, only have O groups) and 3.36 times that of LC (direct lignin activation, lack of O and N groups). After 8 cycles, LPC@PPy still maintained a high adsorption capacity of 92.14 % for reactive blue 19. In addition, this study found that N and O groups in the material played an important role in adsorption, mainly pyridinic-N, C-OH, -COOR, -C-O- and CC. This work provides a new strategy for the removal of reactive blue 19 and determines the groups that mainly interact with reactive blue 19, which provides a new reference for adsorption, catalysis and related fields.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Ning Li
- Guodian Yinhe Water Co. LTD, Qingdao 266071, China
| | - Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China.
| |
Collapse
|
10
|
Li Y, Gao C, Shuai K, Hashan D, Liu J, She D. Performance and mechanism of starch-based porous carbon capture of Cr(VI) from water. Int J Biol Macromol 2023; 241:124597. [PMID: 37116837 DOI: 10.1016/j.ijbiomac.2023.124597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Cr(VI) pollution has seriously affected the survival of biological organisms and humans, so reducing the harm of Cr(VI) pollution is a significant scientific goal. Natural starch exhibits a low adsorption capacity for Cr(VI); thus, physical or chemical modification is needed to improve the adsorption and regeneration performance of starch. In this study, a novel starch-based porous carbon (SPC) was prepared to remove Cr(VI) from water by using soluble starch as a raw material. The characterization results show that the SPC shows a ratio surface area of 1325.39 m2/g. Kinetics suggest that the adsorption of Cr(VI) on SPC is dominated by chemisorption. The isotherm data demonstrated that the adsorption of Cr(VI) by SPC adhered to the Freundlich model. SPC exhibits a multimolecular layer adsorption structure, and the highest amount of adsorbed Cr(VI) in SPC was 777.89 mg/g (25 °C). Ion competition experiments show that SPC exhibits significant selectivity for Cr(VI) adsorption. In addition, the adsorption cycle experiment shows that SPC maintains a 63 % removal rate after 7 cycles. In this study, starch was transformed into high-quality adsorbent materials by hydrothermal and activation strategies, offering a new innovation for the optimization of starch-based adsorbents.
Collapse
Affiliation(s)
- Yanyang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chunli Gao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Kewei Shuai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Dana Hashan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China.
| |
Collapse
|
11
|
Zhao X, Liang H, Wang Z, Li D, Shen X, Xu X, Li K, Xiang Q, Wu Y, Chen Q. Preparation of N-doped cellulose-based hydrothermal carbon using a two-step hydrothermal induction assembly method for the efficient removal of Cr(VI) from wastewater. ENVIRONMENTAL RESEARCH 2023; 219:115015. [PMID: 36535391 DOI: 10.1016/j.envres.2022.115015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Cr(VI) pollution is a growing problem that causes the deterioration of the environment and human health. We report the development of an effective adsorbent for the removal of Cr(VI) from wastewater. N-doped cellulose-based hydrothermal carbon (N-CHC) was prepared via a two-step hydrothermal method. The morphology and structural properties of N-CHC were investigated by various techniques. N-CHC has many O and N groups, which are suitable for Cr(VI) adsorption and reduction. Intermittent adsorption experiments showed that N-CHC had an adsorption capacity of 151.05 mg/g for Cr(VI) at pH 2, indicating excellent adsorption performance. Kinetic and thermodynamic analyses indicates that the adsorption of Cr(VI) on N-CHC follows a monolayer uniform adsorption process, which is a spontaneous endothermic process dominated by chemical interaction and limited by diffusion within particles. In a multi-ion system (Pb2+, Cd2+, Mn7+, Cl-, and SO42-), the selectivity of N-CHC toward Cr(VI) was 82.62%. In addition, N-CHC demonstrated excellent reuse performance over seven adsorption-desorption cycles; the Cr(VI) removal rate of N-CHC in 5-20 mg/L wastewater was >99.87%, confirming the potential of N-CHC for large-scale applications. CN/C-OR, pyridinic-N, and pyrrolic-N were found to play a critical role in the adsorption process. This study provides a new technology for Cr(VI) pollution control that could be utilized in large-scale production and other environmental applications.
Collapse
Affiliation(s)
- Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Daijia Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Xiaoyan Shen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Qingyue Xiang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Yihan Wu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
12
|
Testing Thymol-Based DES for the Elimination of 11 Textile Dyes from Water. SEPARATIONS 2022. [DOI: 10.3390/separations9120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Textile industries release dangerous wastewater that contain dyes into the environment. Due to their toxic, carcinogenic and mutagenic nature, they must be removed before the discharge. Liquid–liquid extraction has proven to be an efficient method for the removal of these dyes. As extractants, deep eutectic solvents (DESs) have shown excellent results in recent years, as well as presenting several green properties. Therefore, four different hydrophobic DESs based on natural components were prepared thymol:decanoic acid (T:D (1:1)), thymol:DL-menthol (T:M (1:1)), thymol:DL-menthol (T:M (1:2)) and thymol:coumarin (T:C (2:1)) for the extraction of Malachite Green (MG), Brilliant Blue G (BBG), Acid Yellow 73 (AY73), Reactive Red 29 (RR29), Acid Blue 113 (AB113), Reactive Black 5 (RB5), Remazol Brilliant Blue (RBB), Direct Yellow 27 (DY27), Acid Blue 80 (AB80), Direct Blue 15 (DB15) and Acid Violet 43 (AV43) dyes from water. The operational parameters of the liquid–liquid extraction were selected in order to save time and materials, resulting in 30 min of stirring, 15 min of centrifugation and an aqueous:organic ratio of 5:1. In these conditions, the highest values of extraction obtained were 99% for MG, 89% for BBG and 94% for AY73. Based on these results, the influence of the aqueous:organic phase ratio and the number of necessary stages to achieve water decolorization was studied.
Collapse
|
13
|
Decorated Copper Oxide Using β-Cyclodextrin for a Potential Removal of Sunset Yellow from Aqueous Medium. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|