1
|
Guan X, Li X, Wang L, Zhao X, Wang Z, Zhang L, Ma J. Hierarchical porous sulfur self-doped lignin carbon derived from full component utilization of black liquor for high-performance supercapacitors. Int J Biol Macromol 2024; 283:137703. [PMID: 39561843 DOI: 10.1016/j.ijbiomac.2024.137703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Black liquor, primarily consisting of lignin, polysaccharides, and inorganic substances, is a potential precursor of porous carbon materials for high-performance supercapacitors. However, the laborious purification of black liquor lignin and the introduction of exogenous heteroatoms have hindered their practical applications. Herein, the full components of black liquor were utilized to synthesize hierarchical porous sulfur self-doped lignin carbons (S-LCs) through a self-activation process aimed at improving the performance of supercapacitors. Benefiting from the intensified reactivity and crosslinking degree of the polysaccharide component and the sulfur self-doping and self-activation effect of inorganic substances, the resulting S-LCs exhibit a high specific surface area (SSA), abundant porous structure, and enhanced defect activity, all contributing toward increasing the energy storage capacity of supercapacitors. The as-obtained S-LC-G250/700 features a high SSA of 892.94 m2 g-1 and a sulfur content of 3.3 at.%. The S-LC-G250/700 demonstrates excellent specific capacitance (e.g., 405.06 F g-1 at 0.5 A g-1), remarkable stability (103 % capacity retention after 10,000 cycles), and high energy density of 30.4 Wh kg-1. Density functional theory calculations verified the advantages of the high-content sulfur self-doping of black liquor, suggesting that self-doped sulfur contributes to charge adsorption on porous carbon surfaces and promotes electron transfer in the electrolyte.
Collapse
Affiliation(s)
- Xi Guan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Liangcai Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Shi K, Chen Z, Sun W. Controlling of Crystal Facets by Dysprosium-Modified WO 3/Carbon Nanofibers Enhance the Flexible Supercapacitor Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405769. [PMID: 39340272 DOI: 10.1002/smll.202405769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Dysprosium-modified tungsten oxide/carbon nanofibers (Dy-WO3/PCNFs) are fabricated via electrospinning combined with high-temperature calcination to synthesize a flexible, self-supporting electrode material that does not require a conductive agent or binder. XRD and TEM analyses showed that introducing dysprosium promoted the preferential growth of WO3 crystals along the preponderance crystal planes involved in the electrochemical reaction, enhancing the exposure of the (002) and (200) crystal planes. Furthermore, DFT calculations demonstrated that the incorporation of Dy resulted in enhanced adsorption of Dy-WO3 by PCNFs, with an adsorption energy of -1.21 eV. The Bader charge results indicate a transfer of 1.70 |e| from PCNFs to Dy-WO3. DFT calculations demonstrate that strong adsorption facilitates charge adsorption/desorption, which contributes to charge transfer and enhances storage capacity. The prepared Dy-WO3/PCNFs exhibited a high specific capacitance (557.28 F g-1 at 0.5 A g-1). Supercapacitors assembled with Dy-WO3/PCNFs as the positive electrode and CNFs as the negative electrode have high energy density (29.8 Wh kg-1 at a power density of 363.48 W kg-1). This study demonstrates the successful synthesis of Dy-WO3/PCNFs with exceptional electrochemical properties and offers significant insights into the design and application of flexible electrodes by incorporating dysprosium to modulate the crystal surface of WO3.
Collapse
Affiliation(s)
- Kaiyan Shi
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Street, Hohhot, Inner Mongolia, 010051, P. R. China
| | - Zefeng Chen
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Street, Hohhot, Inner Mongolia, 010051, P. R. China
| | - Weiyan Sun
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Street, Hohhot, Inner Mongolia, 010051, P. R. China
| |
Collapse
|
3
|
Huang X, Zhong Y, Chen L, Ding X, Chen H, Hu Z, Zhou X, Wang M, Dai X. A novel salt-barrier method of preparation flexible temperature resistant full-component nanocellulose membranes. Int J Biol Macromol 2023; 253:127387. [PMID: 37838107 DOI: 10.1016/j.ijbiomac.2023.127387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
With the simplification and diversification of separation technologies, nanocellulose membranes have become widely used as insulating materials. Recently, study of nanocellulose membrane modification has become a hot topic. However, the application of nanocellulose membrane has been limited due to their inadequate heat resistance and flexibility. Herein, based on the pyrolytic and thermoplastic properties of cellulose, we innovatively introduced a salt barrier scheme to regulate the degree of hydrogen bonding and thermoplastic bonding between fibers. This was achieved by adding a salt barrier agent, NaCl, in the middle of the nanocellulose to prepare and obtain flexible, high-temperature-resistant nanocellulose film materials. The full-component cellulose films thus prepared exhibited high tensile strength (8 MPa), excellent flexibility (105 mN), high electrical breakdown strength (67 KV/mm), and volume resistivity meeting the standard of insulation materials (3.23 × 1013 Ω·m). This scheme adheres to the principles of low cost, green, non-toxic and non-hazardous, providing a brand new approach for the research and development of high temperature resistant cellulose membrane materials, which is of significant commercial value and industrialization prospect.
Collapse
Affiliation(s)
- Xingyu Huang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaoliang Ding
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hua Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhijun Hu
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaofan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Minliang Wang
- Zhejiang Xianhe Special Paper Co., Quzhou 324000, China
| | - Xianzhong Dai
- Zhejiang Xianhe Special Paper Co., Quzhou 324000, China
| |
Collapse
|
4
|
Appiah ES, Dzikunu P, Mahadeen N, Ampong DN, Mensah-Darkwa K, Kumar A, Gupta RK, Adom-Asamoah M. Biopolymers-Derived Materials for Supercapacitors: Recent Trends, Challenges, and Future Prospects. Molecules 2022; 27:6556. [PMID: 36235093 PMCID: PMC9571253 DOI: 10.3390/molecules27196556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Supercapacitors may be able to store more energy while maintaining fast charging times; however, they need low-cost and sophisticated electrode materials. Developing innovative and effective carbon-based electrode materials from naturally occurring chemical components is thus critical for supercapacitor development. In this context, biopolymer-derived porous carbon electrode materials for energy storage applications have gained considerable momentum due to their wide accessibility, high porosity, cost-effectiveness, low weight, biodegradability, and environmental friendliness. Moreover, the carbon structures derived from biopolymeric materials possess unique compositional, morphological, and electrochemical properties. This review aims to emphasize (i) the comprehensive concepts of biopolymers and supercapacitors to approach smart carbon-based materials for supercapacitors, (ii) synthesis strategies for biopolymer derived nanostructured carbons, (iii) recent advancements in biopolymer derived nanostructured carbons for supercapacitors, and (iv) challenges and future prospects from the viewpoint of green chemistry-based energy storage. This study is likely to be useful to the scientific community interested in the design of low-cost, efficient, and green electrode materials for supercapacitors as well as various types of electrocatalysis for energy production.
Collapse
Affiliation(s)
- Eugene Sefa Appiah
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Perseverance Dzikunu
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Nashiru Mahadeen
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Daniel Nframah Ampong
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Kwadwo Mensah-Darkwa
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
- The Brew-Hammond Energy Centre, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi AK-448-7139, Ghana
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura 281406, India
| | - Ram K. Gupta
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, Pittsburg KS 66762, USA
| | - Mark Adom-Asamoah
- Department of Civil Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| |
Collapse
|
5
|
Gao S, Liu L, Mao F, Zhang Z, Pan K, Zhou Z. Coal-based ultrathin N-doped carbon nanosheets synthesized by molten-salt method for high-performance lithium-ion batteries. NANOTECHNOLOGY 2022; 33:425401. [PMID: 35803126 DOI: 10.1088/1361-6528/ac7fa5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Coal is a typical fossil fuel and it is also a natural carbon material, therefore, converting it to functional carbon materials is an effective way to enhance the economic advantages of coal. Here, ultrathin N-doped carbon nanosheets were prepared from low-cost coal via a handy and green molten-salt method, which shown excellent performance for lithium-ion batteries (LIBs). The formation mechanism of ultrathin nanosheets was studied in detail. The eutectic molten salts possess low melting points and become a strong polar solvent at the calcined temperature, making the acidified coal miscible with them in very homogeneously state. Therefore, they can play a gigantic role inin situpore-forming during the carbonization and induce the formation of ultrathin nanosheets due to the salt ions. Simultaneously, the ultrathin N-doped carbon nanosheets with rich defects and controllable surface area was smoothly prepared without any more complex process while revealing brilliant electrochemical performance due to rich ion diffusion pathways. It delivers reversible capacity of 727.0 mAh g-1at 0.2 A g-1after 150 cycles. Thus, the molten-salt method broadens the avenue to construct porous carbon materials with tailor-made morphologies. Equally important, this approach provides a step toward the sustainable materials design and chemical science in the future.
Collapse
Affiliation(s)
- Shasha Gao
- Key Laboratory of Microelectronics and Energy of Henan Province, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, People's Republic of China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, People's Republic of China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, People's Republic of China
| | - Feifei Mao
- Key Laboratory of Microelectronics and Energy of Henan Province, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Zhang Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Kecheng Pan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhen Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- School of Materials Science and Engineering Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
6
|
Zhong Y, Wang T, Yan M, Miao C, Zhou X, Tong G. High-value utilization of bamboo pulp black liquor lignin: Preparation of silicon-carbide derived materials and its application. Int J Biol Macromol 2022; 217:66-76. [PMID: 35835306 DOI: 10.1016/j.ijbiomac.2022.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
The black liquor of bamboo pulp contains a large amount of silicon, which makes it difficult to separate industrial lignin, thus hindering its high-value utilization. Herein, this paper dedicates to exploring the high-value use of silica-containing lignin. Tetraethyl silicate (TEOS) was added to the above silicon-containing lignin for crosslinking with the lignin to prevent disintegration during carbonization and provide an additional source of silica. The carbonization is carried out at 600 °C (LT-6), 900 °C (LT-9) and 1200 °C (LT-12), and the structural evolution of SiOxCy is innovatively analyzed. The results show that LT-9 is dominated by the SiO3C structure and has a specific surface area of 269 m2 g-1. The specific capacitance of LT-9 and LT-12 as supercapacitors electrodes is 78.6 F g-1 and 74.8 F g-1 at a current density of 1 A g-1, and remains 95 % and 91.7 % after 10,000 cycles. Moreover, LT-9 has a high yield of 54 %. In this work, silicon-containing lignin is exploratively prepared as a silicon-carbide-derived material. Furthermore, the potential relationship between different SiOxCy molecular structures and electrochemical performance is evaluated, which is instructive for the high-value utilization of black liquor in bamboo pulp.
Collapse
Affiliation(s)
- Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China
| | - Guolin Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|