1
|
Yun H, Park S, Bang J, Kim J, Jung S, Won S, Kim S, Lim H, Kim SG, Choi IG, Kwak HW. Lignin-derived carbon flake sorbent for efficient oil-water separation. Int J Biol Macromol 2025; 308:142618. [PMID: 40158594 DOI: 10.1016/j.ijbiomac.2025.142618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Rapid industrialization and economic growth have intensified the impact of oily contaminants on human health and economic activities. This study developed an sorbent for oil spill remediation in aquatic systems using lignin-derived carbon flakes. Melamine foam, known for its commercial applicability, was used as a polymer matrix, with lignin serving as a binding agent for carbon flake coating. The modified foam exhibited a contact angle of 139°, confirming successful hydrophobization. The foam demonstrated an oil sorption capacity of 49-105 g/g for various organic solvents and showed excellent reusability through repeated sorption-desorption cycles and structural stability tests. This study highlighted the potential of lignin as a renewable resource for creating high-value, green sorbents, contributing to sustainable environmental management and a circular economy.
Collapse
Affiliation(s)
- Heecheol Yun
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwoo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwook Won
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seojin Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyoseung Lim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seon-Gyeong Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Rodrigues JS, de S M de Freitas A, de Lima LF, Lopes HSM, Maciel CC, Fré LVBV, Pires AAF, de Lima VH, Oliveira VJR, de A Olivati C, Ferreira M, Riul A, Botaro VR. Synthesis of lignin-based carbon/graphene oxide foam and its application as sensors for ammonia gas detection. Int J Biol Macromol 2024; 268:131883. [PMID: 38677702 DOI: 10.1016/j.ijbiomac.2024.131883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The present study highlights the integration of lignin with graphene oxide (GO) and its reduced form (rGO) as a significant advancement within the bio-based products industry. Lignin-phenol-formaldehyde (LPF) resin is used as a carbon source in polyurethane foams, with the addition of 1 %, 2 %, and 4 % of GO and rGO to produce carbon structures thus producing carbon foams (CFs). Two conversion routes are assessed: (i) direct addition with rGO solution, and (ii) GO reduction by heat treatment. Carbon foams are characterized by thermal, structural, and morphological analysis, alongside an assessment of their electrochemical behavior. The thermal decomposition of samples with GO is like those having rGO, indicating the effective removal of oxygen groups in GO by carbonization. The addition of GO and rGO significantly improved the electrochemical properties of CF, with the GO2% sensors displaying 39 % and 62 % larger electroactive area than control and rGO2% sensors, respectively. Furthermore, there is a significant electron transfer improvement in GO sensors, demonstrating a promising potential for ammonia detection. Detailed structural and performance analysis highlights the significant enhancement in electrochemical properties, paving the way for the development of advanced sensors for gas detection, particularly ammonia, with the prospective market demands for durable, simple, cost-effective, and efficient devices.
Collapse
Affiliation(s)
- Jéssica S Rodrigues
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil.
| | - Amanda de S M de Freitas
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280 São José do Campos, SP, Brazil
| | - Lucas F de Lima
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Henrique S M Lopes
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil; Polymer Materials Characterization Laboratory (LCaMP), Technological College of Sorocaba (FATEC), Eng. Carlos Reinaldo Mendes, 2015, 18013-280 Sorocaba, SP, Brazil
| | - Cristiane C Maciel
- Science and Technology Institute of Sorocaba (ICTS), São Paulo State University (UNESP), Av. Três de Março, 511, 18087-180 Sorocaba, Brazil
| | - Lucas V B V Fré
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Ariane A F Pires
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Vitor H de Lima
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Vinicius J R Oliveira
- Department of Physics, Paulista State University (UNESP), 19060-900 Presidente Prudente, SP, Brazil
| | - Clarissa de A Olivati
- Department of Physics, Paulista State University (UNESP), 19060-900 Presidente Prudente, SP, Brazil
| | - Marystela Ferreira
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Antonio Riul
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Vagner R Botaro
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| |
Collapse
|
3
|
Tang Q, Sun Y, Li J, Zhou M, Yang D, Pang Y. Preparations of 25 wt% of Pyraclostrobin Nanosuspension Concentrate (SC) Using Lignosulfonate-Based Colloidal Spheres to Improve Its Thermal Storage Stability. Molecules 2024; 29:1419. [PMID: 38611699 PMCID: PMC11013202 DOI: 10.3390/molecules29071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Improving the thermal storage stability of nanosuspension concentrate (SC) prepared from low-melting-point pesticide is a recognized problem. In this work, using pyraclostrobin as the raw material, 25 wt% of pyraclostrobin nano-SC was prepared through a water-based grinding method, and the optimal grinding conditions were obtained as follows: a grinding time of 23 h, D-3911 as dispersant and a dispersant dosage of 12 wt%. The pyraclostrobin nano-SC D90 size prepared based on this best formula was 216 nm. Adding glycerin could improve the stability of nano-SC at room temperature, but its thermal storage stability was still poor. For this problem, sodium lignosulfonate and cetyltrimethylammonium bromide (NaLS/CTAB) colloidal spheres were prepared through electrostatic and hydrophobic self-assembly and characterized. The delamination and precipitation of nano-SC can be significantly improved by adding an appropriate amount of colloidal spheres, and the nano-SC D90 size decreased from 2726 to 1023 nm after 7 days of thermal storage. Farmland experiments indicated the control efficiency of pyraclostrobin nano-SC against flowering cabbage downy mildew disease was about 30% higher than that of SC. Especially after adding the wetting agent, the effect of nano-SC could be comparable to that of commercial Kairun (currently the best pyraclostrobin formulation in the world).
Collapse
Affiliation(s)
- Qianqian Tang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, 6 Jiqing Road, Yibin District, Luoyang 471934, China; (Q.T.); (J.L.)
| | - Yu Sun
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; (Y.S.); (D.Y.); (Y.P.)
| | - Jinnuo Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, 6 Jiqing Road, Yibin District, Luoyang 471934, China; (Q.T.); (J.L.)
| | - Mingsong Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; (Y.S.); (D.Y.); (Y.P.)
| | - Dongjie Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; (Y.S.); (D.Y.); (Y.P.)
| | - Yuxia Pang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; (Y.S.); (D.Y.); (Y.P.)
| |
Collapse
|
4
|
Wu W, Li P, Su W, Yan Z, Wang X, Xu S, Wei Y, Wu C. Polyaniline as a Nitrogen Source and Lignosulfonate as a Sulphur Source for the Preparation of the Porous Carbon Adsorption of Dyes and Heavy Metal Ions. Polymers (Basel) 2023; 15:4515. [PMID: 38231908 PMCID: PMC10708433 DOI: 10.3390/polym15234515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Using agricultural and forestry wastes as raw materials, adsorbent materials were prepared for dye adsorption in wastewater, which can minimize the environmental load and fully realize sustainability by treating waste with waste. Taking lignosulfonate as a raw material, due to its molecular structure having more reactive groups, it is easy to form composite materials via a chemical oxidation reaction with an aniline monomer. After that, using a sodium lignosulfonate/polyaniline composite as the precursor, the activated high-temperature pyrolysis process is used to prepare porous carbon materials with controllable morphology, structure, oxygen, sulfur, and nitrogen content, which opens up a new way for the preparation of functional carbon materials. When the prepared O-N-S co-doped activated carbon materials (SNC) were used as adsorbents, the adsorption study of cationic dye methylene blue was carried out, and the removal rate of SNC could reach up to 99.53% in a methylene blue solution with an initial concentration of 100 mg/L, which was much higher than that of undoped lignocellulosic carbon materials, and the kinetic model conformed to the pseudo-second-order kinetic model. The adsorption equilibrium amount of NC (lignosulfonate-free) and SNC reached 478.30 mg/g and 509.00 mg/g, respectively, at an initial concentration of 500 mg/L, which was consistent with the Langmuir adsorption isothermal model, and the adsorption of methylene blue on the surface of the carbon material was a monomolecular layer. The adsorption of methylene blue dye on the carbon-based adsorbent was confirmed to be a spontaneous and feasible adsorption process by thermodynamic parameters. Finally, the adsorption of SNC on methylene blue, rhodamine B, Congo red, and methyl orange dyes were compared, and it was found that the material adsorbed cationic dyes better. Furthermore, we also studied the adsorption of SNC on different kinds of heavy metal ions and found that its adsorption selectivity is better for Cr3+ and Pb2+ ions.
Collapse
Affiliation(s)
- Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Zifei Yan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Xinyan Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Siyu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| |
Collapse
|
5
|
Tang Q, Wu H, Zhou M, Yang D. Preparation of a new gel-type lignin-based cationic adsorption resin for efficient removal of Ca 2+ from aqueous solutions. Int J Biol Macromol 2023; 241:124505. [PMID: 37085079 DOI: 10.1016/j.ijbiomac.2023.124505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Presently, most studies on modified lignin focused on the adsorption to heavy metal cations, but rarely to Ca2+ in hard water. Therefore, this work prepared a new gel-type lignin-based cationic adsorption resin (E-LSAF) through the crosslinking and curing of alkali lignin grafted by sodium sulfite sulfonated acetone to remove Ca2+ in water. Under the determined optimum synthesis conditions, E-LSAF with a highest sulfonic group content of 1.99 mmol/g was obtained. Structural and physicochemical measuring results showed E-LSAF was a gel-type resin, owning strong hydrophilicity, high mechanical strength, excellent thermal stability and acid-alkaline resistance. Adsorption results indicated the adsorption of E-LSAF to Ca2+ was well-fitted by Langmuir model, and the maximum adsorption capacity reached 45.8 mg/g. Pseudo-second-order model can describe this adsorption process well, suggesting it a chemisorption process. Dynamic column adsorption results showed E-LSAF could transform hard water into soft or even very soft water. The regeneration efficiency still maintained 80 % after 5 cycles. The adsorption mechanism was attributed to electrostatic attraction, ion exchange and complexation. This work provided a high-performance lignin-based cationic adsorption material with high adsorption capacity to Ca2+ and excellent acid-alkaline resistance, which filled the research gap of using modified sulfonated lignin to remove Ca2+ from water.
Collapse
Affiliation(s)
- Qianqian Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, 6 Jiqing Road, Yibin District, Luoyang 471934, People's Republic of China
| | - Hao Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People's Republic of China
| | - Mingsong Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People's Republic of China.
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People's Republic of China
| |
Collapse
|
6
|
Rodrigues JS, de Freitas ADSM, Maciel CC, Guizani C, Rigo D, Ferreira M, Hummel M, Balakshin M, Botaro VR. Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications. Int J Biol Macromol 2023; 240:124460. [PMID: 37076061 DOI: 10.1016/j.ijbiomac.2023.124460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The rapid exhaustion of fossil fuels brings to the fore the need to search for energy efficient strategies. The conversion of lignin into advanced functional carbon-based materials is considered one of the most promising solutions for environmental protection and the use of renewable resources. This study analyzed the structure-performance correlation of carbon foams (CF) when lignin-phenol-formaldehyde (LPF) resins produced with different fractions of kraft lignin (KL) were employed as carbon source, and polyurethane foam (PU) as sacrificial mold. The lignin fractions employed were KL, fraction of KL insoluble in ethyl acetate (LFIns) and fraction of KL soluble in ethyl acetate (LFSol). The produced CFs were characterized by thermogravimetric analysis (TGA), X-ray diffractometry (XRD), Raman spectroscopy, 2D HSQC Nuclear magnetic resonance (NMR) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and electrochemical measurements. The results showed that when LFSol was employed as a partial substitute for phenol in LPF resin synthesis, the final performance of the produced CF was infinitely higher. The improved solubility parameters of LFSol along with the higher S/G ratio and β-O-4/α-OH content after fractionation were the key to produce CF with better carbon yields (54 %). The electrochemical measurements showed that LFSol presented the highest current density (2.11 × 10-4 mA.cm-2) and the lowest value of resistance to charge transfer (0.26 KΩ) in relation to the other samples, indicating that the process of electron transfer was faster in the sensor produced with LFSol. LFSol's potential for application as an electrochemical sensor was tested as a proof of concept and demonstrated excellent selectivity for the detection of hydroquinone in water.
Collapse
Affiliation(s)
- Jéssica S Rodrigues
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil.
| | - Amanda De S M de Freitas
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280 São José do Campos, SP, Brazil
| | - Cristiane C Maciel
- Science and Technology Institute of Sorocaba (ICTS), São Paulo State University (UNESP), Av. Três de Março, 511, 18087-180 Sorocaba, Brazil
| | - Chamseddine Guizani
- Biorefining Chemistry Team, VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland; Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Davide Rigo
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Marystela Ferreira
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil; Science and Technology Institute of Sorocaba (ICTS), São Paulo State University (UNESP), Av. Três de Março, 511, 18087-180 Sorocaba, Brazil
| | - Michael Hummel
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Mikhail Balakshin
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Vagner R Botaro
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| |
Collapse
|
7
|
Facile strategy for carbon foam fabrication with lignin as sole feedstock and its applications. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Dai D, Qiu J, Xia G, Zhang L, Ma H, Yang L, Yao J. Interspersing CdS nanodots into iodine vacancy-rich BiOI sphere for photocatalytic lignin valorization. Int J Biol Macromol 2023; 227:1317-1324. [PMID: 36470441 DOI: 10.1016/j.ijbiomac.2022.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Flower-like BiOI was decorated by CdS nanodots and followed by the introduction of iodine vacancies (VI) for photocatalytic sodium lignosulfonate (SLS) valorization under visible light. The iodine vacancies could adjust the band configuration, strengthen the light absorption and act as electron traps, while the intimate contact between BiOI and CdS nanodots provides a high-speed channel for charge transfer. As a consequence, the photocatalytic performance of SLS conversion into value-added vanillin was greatly improved over CdS/BiOI-VI compared with those of CdS, BiOI and CdS/BiOI. The highest yield of vanillin is 10.95 mg/gSLS over CdS/BiOI-VI, about 5, 8.7, 1.3 times those of CdS, BiOI, CdS/BiOI, respectively, and exceeding most related photocatalysts reported elsewhere. More significantly, as to the lignin from Masson pine and alkali lignin, the corresponding vanillin yield can reach 7.04 and 6.54 mg/glignin, respectively, under the same condition, which suggests the great potential and universality for photocatalytic lignin valorization over such CdS/BiOI-VI heterostructure.
Collapse
Affiliation(s)
- Dingliang Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guanglu Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hong Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Luan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Recent advances in lignin-based carbon materials and their applications: A review. Int J Biol Macromol 2022; 223:980-1014. [PMID: 36375669 DOI: 10.1016/j.ijbiomac.2022.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
As the most abundant natural aromatic polymer, tens of million of tons of lignin produced in paper-making or biorefinery industry are used as fuel annually, which is a low-value utilization. Moreover, burning lignin results in large amounts of carbon dioxide and pollutants in the air. The potential of lignin is far from being fully exploited and the search for high value-added application of lignin is highly pursued. Because of the high carbon content of lignin, converting lignin into advanced carbon-based structural or functional materials is regarded as one of the most promising solutions for both environmental protection and utilization of renewable resources. Significant progresses in lignin-based carbon materials (LCMs) including porous carbon, activated carbon, carbon fiber, carbon aerogel, nanostructured carbon, etc., for various valued applications have been witnessed in recent years. Here, this review summarized the recent advances in LCMs from the perspectives of preparation, structure, and applications. In particular, this review attempts to figure out the intrinsic relationship between the structure and functionalities of LCMs from their recent applications. Hopefully, some thoughts and discussions on the structure-property relationship of LCMs can inspire researchers to stride over the present barriers in the preparation and applications of LCMs.
Collapse
|
10
|
Dynamic cross-linked polyurethane hot-melt adhesive with high biomass content and high adhesive strength simultaneously. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Tang Q, Zhou M, Yang D. Preparation of uniform lignosulfonate-based colloidal spheres for UV-absorbing thermoplastics. Int J Biol Macromol 2022; 219:663-671. [PMID: 35931298 DOI: 10.1016/j.ijbiomac.2022.07.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022]
Abstract
Lignosulfonate-based colloidal spheres were prepared from sodium lignosulfonate and cetyltrimethylammonium bromide (NaLS/CTAB) complex through electrostatic and hydrophobic self-assembly. Due to the stronger hydrophobicity and UV-blocking performance, NaLS/CTAB colloids were easier to be blended with HDPE than lignosulfonate, and therefore applied to UV-absorbing thermoplastics. Results showed NaLS/CTAB colloidal spheres had a particle size of 160 nm with a polydispersity index of 0.081. NaLS/CTAB molecules started to form spheres at critical water content of 64 vol% when the initial concentration of NaLS/CTAB in EtOH was 0.5 mg/cm3 and the obtaining of colloids was completed at a water content of 90 vol%. The size and polydispersity of spheres were well controlled by adjusting initial concentrations of NaLS/CTAB in EtOH. Since NaLS/CTAB colloidal spheres retained phenylpropane units and phenolic hydroxyl groups of NaLS, NaLS/CTAB/HDPE composites displayed excellent UV-absorbing properties. Meanwhile, the mechanical property of NaLS/CTAB/HDPE composites was also superior to that of frequently-used CaCO3/HDPE materials in industry, reaching the requirement of industrial uses. However, too high additions would result in the increased agglomeration of NaLS/CTAB spheres in HDPE, and thus the deteriorated mechanical property. Additionally, the added spheres played a role of "ball", which caused the decreased viscosity, improved flowability and processability of composites.
Collapse
Affiliation(s)
- Qianqian Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Mingsong Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|