1
|
Li N, Pi C, Zhu S, Li X, Wang L, Shi P, Zuo Y, Zheng W, Jiang J, Yang Y, Zhang Q, Tao L, Chu S, Wei Y, Zhao L. Opportunities for the treatment of atherosclerosis: selectins. Pharmacol Res 2025:107807. [PMID: 40449813 DOI: 10.1016/j.phrs.2025.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/17/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Despite the widespread availability of selectins for tumor therapy, their contribution to atherosclerosis has long been under-emphasized due to their "cofactor's" status and technological limitations. However, advances in immunohistology, glycomics, and related technologies require us to reassess their relationship. Thus, this review identifies pivotal translational opportunities from the intricate mechanisms and explores the clinical promise of selectins in the diagnosis and treatment of atherosclerosis based on the latest clinical research. This review provides insights into selectin-specific tracers and inhibitors, providing lessons for more precise diagnosis and treatment of patients with atherosclerosis.
Collapse
Affiliation(s)
- Nong Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Chao Pi
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Siying Zhu
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xiumei Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Liu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Peng Shi
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Jun Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Qiong Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Lei Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People's Republic of China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College.
| | - Yumeng Wei
- Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China; Central Nervous System Product Research and Development Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
2
|
Wang X, Zhao Y, Gu Y, Bai L, Chen L, Guan S. Chondroitin sulfate and Cys-Ala-Gly peptides coated ZE21B magnesium alloy for enhanced corrosion resistance and vascular compatibility. Int J Biol Macromol 2025; 311:143895. [PMID: 40319985 DOI: 10.1016/j.ijbiomac.2025.143895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Coronary stents are widely used in the interventional treatment of cardiovascular disease. Biodegradable magnesium alloy stents are ideal candidates to replace traditional non-biodegradable stents due to their excellent mechanical properties and biodegradation. However, too fast degradation and poor biocompatibility limit the further clinical application of magnesium alloy stents. Herein, a composite coating consisting of an MgF2 layer, PDA layer, ChS, and CAG peptide was constructed on the Mg-Zn-Y-Nd (ZE21B) alloy to enhance its corrosion resistance, hemocompatibility, and cytocompatibility. The MgF2 and PDA layers in the composite coating could collectively enhance the corrosion resistance of ZE21B alloy, and the ChS and CAG peptides in the composite coating could improve the anticoagulant and pro-endothelialization capacity of ZE21B alloy. The corrosion current density of the modified ZE21B alloy was much lower than that of bare ZE21B alloy, proving the better corrosion resistance. Moreover, the excellent hemocompatibility of modified ZE21B alloy was verified by the lower levels of hemolysis rate, fibrinogen adsorption and denaturation, and platelet adhesion and activation. Furthermore, the composite coating could selectively promote the adhesion, proliferation, migration, and competitive growth of endothelial cells rather than smooth muscle cells on the ZE21B alloy owing to the synergistic biological effects of ChS and CAG peptides. The ChS/CAG modified samples also exhibited excellent biosafety and histocompatibility in vivo implantation experiments. The composite coating significantly improved the corrosion resistance and biocompatibility of ZE21B alloy, and provided a simple and effective strategy for developing degradable vascular stents.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China
| | - Yuan Zhao
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China
| | - Yunwei Gu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China
| | - Lingchuang Bai
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China.
| | - Lan Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China.
| | - Shaokang Guan
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, 100 Science Road, PR China; Henan Key Laboratory of Advanced Light Alloy, Zhengzhou 450001, 100 Science Road, PR China; Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou 450001, 100 Science Road, PR China
| |
Collapse
|
3
|
Zhang R, Shi W, Wu X, Yu Q, Xiao Y. Application of hydrogen sulfide donor conjugates in different diseases. Nitric Oxide 2025; 154:128-139. [PMID: 39662602 DOI: 10.1016/j.niox.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
As an endogenous gas signaling molecule, hydrogen sulfide (H2S) has been proved to have a variety of biological activities. Studies have shown that in some disease state H2S concentration in the body is lower than normal state. Based on these findings, exogenous H2S supplementation is expected to be an effective treatment for many diseases. In recent years, a lot of H2S-releasing substances, namely H2S donors, have emerged as H2S sources. Specifically, various H2S donors also could be connected to drugs or compounds to form H2S donor conjugates. Many studies have found that H2S donor conjugates can not only retain the activity of the parent drug, but also reduce the adverse effects of the parent drug, this makes H2S donor conjugates to be a new kind of drug candidates. In this article, H2S donor conjugates will be reviewed and classified according to different diseases, such as inflammation, cardiovascular and cerebrovascular diseases, diseases of central nervous system and cancer. This review aims to provide an idea for researchers for further study of H2S and H2S donor conjugates.
Collapse
Affiliation(s)
- Rui Zhang
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Wumei Shi
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoyan Wu
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Qingfeng Yu
- College of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ying Xiao
- College of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Udaipuria N, Bhattacharya S. Novel Carbohydrate Polymer-Based Systems for Precise Drug Delivery in Colon Cancer: Improving Treatment Effectiveness With Intelligent Biodegradable Materials. Biopolymers 2025; 116:e23632. [PMID: 39340194 DOI: 10.1002/bip.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Due to their biocompatibility, biodegradability, and controlled release, carbohydrates polymers are crucial to targeted drug delivery systems, notably for colon cancer treatment. This article examines how carbohydrate polymers like chitosan, pectin, guar gum, alginate, hyaluronic acid, dextran, and chondroitin sulfate are used in improved drug delivery. Modifying these polymers improves drug loading, stability, and release patterns, enhancing chemotherapeutic drugs' therapeutic index. Chitosan nanoparticles are pH-responsive, making them perfect for cancer treatment. Pectin's resistance to gastric enzymes and colonic bacteria makes it a promising colon-specific medication delivery agent. The combination of these polymers with nanotechnology, 3D printing, and AI allows the creation of stimuli-responsive systems that release drugs precisely in response to environmental signals like pH, redox potential, or colon enzymatic activity. The review highlights intelligent delivery system design advances that reduce systemic toxicity, improve treatment efficacy, and improve patient adherence. Carbohydrate polymers will revolutionize colon cancer treatment with personalized and accurate alternatives.
Collapse
Affiliation(s)
- Nikita Udaipuria
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| |
Collapse
|
5
|
Li Y, Feng Q, Wang L, Gao X, Xi Y, Ye L, Ji J, Yang X, Zhai G. Current targeting strategies and advanced nanoplatforms for atherosclerosis therapy. J Drug Target 2024; 32:128-147. [PMID: 38217526 DOI: 10.1080/1061186x.2023.2300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
Atherosclerosis is one of the major causes of death worldwide, and it is closely related to many cardiovascular diseases, such as stroke, myocardial infraction and angina. Although traditional surgical and pharmacological interventions can effectively retard or slow down the progression of atherosclerosis, it is very difficult to prevent or even reverse this disease. In recent years, with the rapid development of nanotechnology, various nanoagents have been designed and applied to different diseases including atherosclerosis. The unique atherosclerotic microenvironment with signature biological components allows nanoplatforms to distinguish atherosclerotic lesions from normal tissue and to approach plaques specifically. Based on the process of atherosclerotic plaque formation, this review summarises the nanodrug delivery strategies for atherosclerotic therapy, trying to provide help for researchers to understand the existing atherosclerosis management approaches as well as challenges and to reasonably design anti-atherosclerotic nanoplatforms.
Collapse
Affiliation(s)
- Yingchao Li
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Qixiang Feng
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Luyue Wang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Xi Gao
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Yanwei Xi
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Lei Ye
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoye Yang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
6
|
Wang C, He Y, Tang J, Mao J, Liang X, Xu M, Zhang Z, Tian J, Jiang J, Li C, Zhou X. Chondroitin sulfate functionalized nanozymes inhibit the inflammation feedback loop for enhanced atherosclerosis therapy by regulating intercellular crosstalk. Int J Biol Macromol 2024; 282:136918. [PMID: 39471920 DOI: 10.1016/j.ijbiomac.2024.136918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
In the inflammatory microenvironment of atherosclerotic plaques, metabolic dysregulation of superoxide anion (O2-) and hydrogen peroxide (H2O2) leads to the activation of feedback mechanisms involving IL-1β, TNF-α, and MCP-1, which triggers inflammatory cascades between macrophages and vascular smooth muscle cells (VSMCs) in atherosclerosis (AS). To address this, a chondroitin sulfate (CS)-functionalized dual-targeted engineered nanozyme, CS-Lip/PB@Rap, was developed by encapsulating mesoporous Prussian blue nanoparticles (PBs) loaded with rapamycin (Rap) within CS-modified liposomes. CS functionalization endowed CS-Lip/PB@Rap with a specific targeting ability for CD44 receptors, thus enabling targeted delivery to inflammatory macrophages and VSMCs. Moreover, its enhanced multiple enzyme-like activities effectively modulated the imbalance of oxidative stress. The underlying mechanism of crosstalk regulation by these engineered nanozymes may inhibit the NF-κB pathway by restoring normal metabolism of O2- and H2O2, thereby blocking the TNF-α, IL-1β, and MCP-1 feedback loops between macrophages and VSMCs. This process reduced the production of inflammatory macrophages and inhibited the VSMC transformation from a contractile phenotype to a synthetic phenotype, preventing the formation of fibrous caps. Furthermore, the elimination of oxidative stress could decrease the production of oxygenized low-density lipoprotein (ox-LDL), which inhibited the formation of foam cells and alleviated the atherogenic progression.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingying Mao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
7
|
Li D, Chen J, Lu Y, Yan X, Yang X, Zhang F, Tang Y, Cao M, Wang J, Pan M, Su C, Shen J. Codelivery of Dual Gases with Metal-Organic Supramolecular Cage-Based Microenvironment-Responsive Nanomedicine for Atherosclerosis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402673. [PMID: 38844996 DOI: 10.1002/smll.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Indexed: 10/04/2024]
Abstract
Atherosclerosis (AS) is a common cause of coronary heart disease and stroke. The delivery of exogenous H2S and in situ production of O2 within atherosclerotic plaques can help suppress inflammatory cell infiltration and alleviate disease progression. However, the uncontrolled release of gas donors hinders achieving effective drug concentrations and causes toxic effects. Herein, diallyl trisulfide (DATS)-loaded metal-organic cage (MOC)-68-doped MnO2 nanoparticles are developed as a microenvironment-responsive nanodrug with the capacity for the in situ co-delivery of H2S and O2 to inflammatory cells within plaques. This nanomedicine exhibited excellent monodispersity and stability and protected DATS from degradation in the circulation. In vitro studies showed that the nanomedicine reduced macrophage polarization toward an inflammatory phenotype and inhibited the formation of foam cells, while suppressing the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin-1β. In a mouse model of ApoE-/- genotype, the nanomedicine reduces the plaque burden, inflammatory infiltration, and hypoxic conditions within the plaques. Furthermore, the treatment process and therapeutic effects can be monitored by magnetic resonance image (MRI), in real time upon Mn2+ release from the acidic- and H2O2- microenvironment-responsive MnO2 nanoparticles. The DATS-loaded MOC-68-doped MnO2-based nanodrug holds great promise as a novel theranostic platform for AS.
Collapse
Affiliation(s)
- Dongye Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Jingjing Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, No. 135 Xingang Road West, Guangzhou, 510275, China
| | - Yulin Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, No. 135 Xingang Road West, Guangzhou, 510275, China
| | - Xinyu Yan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Xieqing Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Yingmei Tang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou, 510120, China
| | - Mei Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, No. 135 Xingang Road West, Guangzhou, 510275, China
| | - Chengyong Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, No. 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| |
Collapse
|
8
|
Deng X, Wang J, Yu S, Tan S, Yu T, Xu Q, Chen N, Zhang S, Zhang M, Hu K, Xiao Z. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. EXPLORATION (BEIJING, CHINA) 2024; 4:20230090. [PMID: 38939861 PMCID: PMC11189587 DOI: 10.1002/exp.20230090] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiujiao Deng
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinghao Wang
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Shanshan Yu
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Suiyi Tan
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Tingting Yu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Qiaxin Xu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Nenghua Chen
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical TranslationJinan UniversityGuangzhouChina
| |
Collapse
|
9
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
10
|
Mneimneh AT, Mehanna MM. Chondroitin Sulphate: An emerging therapeutic multidimensional proteoglycan in colon cancer. Int J Biol Macromol 2024; 254:127672. [PMID: 38287564 DOI: 10.1016/j.ijbiomac.2023.127672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) that has captured massive attention in the field of drug delivery. As the colon is considered the preferred site for local and systemic delivery of bioactive agents for the treatment of various diseases, colon-targeted drug delivery rose to the surface of research. Amid several tactics to attain colon-targeted drug release, the exploitation of polymers degraded by colonic bacteria holds great promise. Chondroitin sulfate as a biodegradable, biocompatible mucopolysaccharide is known for its anti-inflammatory, anti-osteoarthritis, anti-atherosclerotic, anti-oxidant, and anti-coagulant effects. Besides these therapeutic functions, CS thrived to play a major role in nanocarriers as a matrix material, coat, and targeting ligand. This review focuses on the role of CS in nanocarriers as a matrix material or as a targeting moiety for colon cancer therapy, relating the present applications to future perspectives.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
11
|
Chen Q, Guo C, Liu Z, Cao M, Wang W, Zhang D, Geng H, Diao N, Chen D. Multifunctional nanoparticles with anti-inflammatory effect for improving metabolic syndromes. J Drug Target 2023; 31:286-295. [PMID: 36315421 DOI: 10.1080/1061186x.2022.2142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndromes are a group of metabolic disorders for which the molecular mechanisms are still unclear. An increasing number of studies have implicated metabolic syndrome in the association with inflammation. Currently, lipsomes is known to improve nanoparticle hydrophobicity. Meanwhile, in drug delivery systems the application of cholesterol, which is commonly used to stabilise liposomal structures, has essentially no pharmacological effect on liposomes. Herein, we developed an 'anti-inflammatory liposome' (Phy-Lip) to effectively handle these challenges via employing Phytosterol instead of cholesterol. Different with the conventional liposomes, Phy-Lip is a much more brilliant nanoparticle with anti-inflammatory functions. In Phy-Lip, cholesterol was substituted by Phy, which works as membrane stabiliser, anti-inflammatory adjuvant at the same time. The experimental results show that Phy-Lip has a strong anti-inflammatory effect, and improves Metabolic syndromes. This study aims to provide a way to solve the challenge.
Collapse
Affiliation(s)
- Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Zhongxin Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Dandan Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Hongxu Geng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| |
Collapse
|
12
|
Tu S, He W, Han J, Wu A, Ren W. Advances in imaging and treatment of atherosclerosis based on organic nanoparticles. APL Bioeng 2022; 6:041501. [PMCID: PMC9726224 DOI: 10.1063/5.0127835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 12/09/2022] Open
Abstract
Atherosclerosis, a systemic chronic inflammatory disease, can lead to thrombosis and vascular occlusion, thereby inducing a series of serious vascular diseases. Currently, distinguishing unstable plaques early and achieving more effective treatment are the two main clinical concerns in atherosclerosis. Organic nanoparticles have great potential in atherosclerotic imaging and treatment, showing superior biocompatibility, drug-loading capacity, and synthesis. This article illustrates the process of atherosclerosis onset and the key targeted cells, then systematically summarizes recent progress made in organic nanoparticle-based imaging of different types of targeted cells and therapeutic methods for atherosclerosis, including optical and acoustic-induced therapy, drug delivery, gene therapy, and immunotherapy. Finally, we discuss the major impediments that need to be addressed in future clinical practice. We believe this article will help readers to develop a comprehensive and in-depth understanding of organic nanoparticle-based atherosclerotic imaging and treatment, thus advancing further development of anti-atherosclerosis therapies.
Collapse
Affiliation(s)
| | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, China,Authors to whom correspondence should be addressed:; ; and
| | | | - Aiguo Wu
- Authors to whom correspondence should be addressed:; ; and
| | - Wenzhi Ren
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
13
|
Zhou X, Chen Q, Guo C, Su Y, Guo H, Cao M, Liu Z, Zhang D, Diao N, Fan H, Chen D. CD44 Receptor-Targeted and Reactive Oxygen Species-Responsive H 2S Donor Micelles Based on Hyaluronic Acid for the Therapy of Renal Ischemia/Reperfusion Injury. ACS OMEGA 2022; 7:42339-42346. [PMID: 36440107 PMCID: PMC9686187 DOI: 10.1021/acsomega.2c05407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
For the therapy attenuating renal ischemia-reperfusion (IR) injury, a novel drug delivery system was urgently needed, which could precisely deliver drugs to the pathological renal tissue. Here, we have prepared new nanomaterials with a reactive oxygen species (ROS)-responsive hydrogen sulfide (H2S) donor and hyaluronic acid that targets CD44 receptor. The novel material was synthesized and characterized via related experiments. Then, rapamycin was loaded, which inhibited kidney damage. In the in vitro study, we found that the micelles had ROS-responsiveness, biocompatibility, and cell penetration. In addition, the experimental results showed that the intracellular H2S concentration after administration was threefold higher than that of the control group. The western blot assay revealed that they have anti-inflammatory effects via H2S donor blocking the NF-κB signaling pathway. Consequently, the rising CD44 receptor-targeting and ROS-sensitive H2S donor micelles would provide a promising way for renal IR injury. This work provides a strategy for improving ischemia/reperfusion injury for pharmaceuticals.
Collapse
Affiliation(s)
- Xiudi Zhou
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
- Department
of Pharmacy, Binzhou People’s Hospital
Affiliated to Shandong First Medical University, China, Binzhou256600, P. R. China
| | - Qiang Chen
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Chunjing Guo
- College
of Marine Life Science, Ocean University
of China, Qingdao266003, P. R. China
| | - Yanguo Su
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Huimin Guo
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Min Cao
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Zhongxin Liu
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Dandan Zhang
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Ningning Diao
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Huaying Fan
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| | - Daquan Chen
- Collaborative
Innovation Center of Advanced Drug Delivery System and Biotech Drugs,
School of Pharmacy, Yantai University, Yantai264005, P. R. China
| |
Collapse
|
14
|
Xu H, She P, Ma B, Zhao Z, Li G, Wang Y. ROS responsive nanoparticles loaded with lipid-specific AIEgen for atherosclerosis-targeted diagnosis and bifunctional therapy. Biomaterials 2022; 288:121734. [PMID: 35999079 DOI: 10.1016/j.biomaterials.2022.121734] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Atherosclerosis, which is triggered by endothelial damage, progressive local inflammation and excessive lipid accumulation, is one of the most common cardiovascular diseases in recent years. Drug delivery systems have shown great potential for the accurate diagnosis and effective treatment of early atherosclerosis, but are accompanied by disadvantages such as poor stability, lack of active targeting and non-specific recognition capabilities, which still need to be further developed. In our work, a multifunctional nanoparticle (LFP/PCDPD) with reactive oxygen species (ROS) responsive drug release, lipid removal, and lipid-specific AIE fluorescence imaging was constructed. Cyclodextrin structure with lipid removal function and PMEMA blocks with ROS-response-mediated hydrophobic to hydrophilic conversion were simultaneously introduced into the structure of LFP/PCDPD to load the anti-inflammatory drug prednisolone (Pred) and lipid-specific AIEgen (LFP). The active targeting function of LFP/PCDPD was conferred by the high affinity of dextran to the vascular adhesion molecule-1 (VCAM-1) and CD44 receptor on the surface of broken endothelial cells. After intravenous injection into ApoE-/- mice, LFP/PCDPD actively enriched in the microenvironment of local ROS overexpression and rich lipids in atherosclerosis. Pred and LFP were released while lipids were removed, thus enabling proactive targeting of atherosclerosis and efficient "two-pronged" treatment.
Collapse
Affiliation(s)
- Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Peiyi She
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|