1
|
Taherian Z, Khosravimelal S, Ajamian F, Eftekhari S, Alizadeh S, Adel B, Ahovan ZA, Hashemi A, Farshi P, Jajarmi V, Cameron NR, Gholipourmalekabadi M. Optimizing of an antibacterial silk suture covered with synergistic antibiotics-loaded thermo-responsive chitosan hydrogel against resistant clinical isolates. Int J Biol Macromol 2025:144638. [PMID: 40414387 DOI: 10.1016/j.ijbiomac.2025.144638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/10/2025] [Accepted: 05/23/2025] [Indexed: 05/27/2025]
Abstract
Postoperative wound infections have posed a substantial burden on healthcare systems, contributing to high morbidity and mortality rates. To address this issue, researchers have focused on fabricating antibacterial sutures to prevent post-suturing infections. In this study, we present the design and fabrication of a novel antibacterial suture using silk and chitosan. The silk sutures were coated with a thermo-sensitive chitosan hydrogel containing colistin/meropenem (Col/Mer) at concentrations of 64/128 μg/ml, 128/256 μg/ml, and 256/512 μg/ml. Comprehensive characterizations of the fabricated antibacterial sutures were performed, encompassing scanning electron microscopy, in vitro degradation assay, swelling test, drug release behavior, and mechanical analysis. Additionally, the sutures' interactions with fibroblast cells were assessed to evaluate their cytocompatibility. Antibacterial properties of the sutures were also evaluated against standard and resistant clinical isolates. Furthermore, the biocompatibility of the sutures was examined in vivo. Our results demonstrated that the antibacterial sutures exhibited a uniform structure, around 15 % weight loss within 35 days, and roughly 10 % water absorption within 24 h. The results also displayed around 0.006 % (w/w), 0.012 % (w/w), and 0.023 % (w/w) drug concentration in 3 antibiotics-loaded samples while exhibiting a controlled-release pattern in 7 days. Antibacterial studies revealed a significant inhibitory effect against both standard and extensively drug-resistant strains of Acinetobacter baumannii (A. baumannii), as well as the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Moreover, when employed in vivo, the hydrogel-coated silk sutures demonstrated excellent biocompatibility, with no significant signs of inflammation or immune cell aggregation in histological analysis. In conclusion, our developed antibacterial suture presents promising potential for the prevention of post-suturing infections, making it a compelling candidate for further evaluation and translation into practical clinical applications.
Collapse
Affiliation(s)
- Zahra Taherian
- Department of Biology, Faculty of science, University of Guilan, Rasht, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Farzam Ajamian
- Department of Biology, Faculty of science, University of Guilan, Rasht, Iran
| | - Samane Eftekhari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Alizadeh
- R & D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of science, University of Guilan, Rasht, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Farshi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neil R Cameron
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
2
|
Aminoroaya N, Ehtesabi H, Monfared-Hajishirkiaee R, Rezaei A, Latifi H, Ahadian MM. Investigating the absorbent properties of carboxymethyl cellulose-chitosan‑carbon dots nanocomposite sponge using photoacoustic microscopy. Int J Biol Macromol 2025; 308:142517. [PMID: 40147654 DOI: 10.1016/j.ijbiomac.2025.142517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/01/2024] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Recently, sponge biopolymers containing nanoparticles have attracted attention for the preparation of wound-healing products such as wound dressings. Due to the optically non-transparent nature of nanocomposite sponges, only limited microscopic methods have been used to investigate the structural changes caused by adding nanomaterials. The use of various microscopic characterization methods can lead to a better understanding of the performance of nanomaterials in improving the properties of polymer sponges. In this study, photoacoustic microscopy (PAM) imaging was used as a 3D imaging technique to visualize blood penetration and spreading in the fabricated nanocomposite sponges. To form a sponge nanocomposite, carboxymethylcellulose/chitosan (CMC/CS) biopolymers are bonded to green-synthesized carbon dots (CD). The results showed that adding CD to CMC/CS biopolymer and forming CMC/CS/CD nanocomposites caused changes in the cavity structure, resulting in increased porosity and more water absorption and retention, which was better for fluid absorption and therefore more helpful for wound dressing applications. In addition, an investigation of blood penetration and its distribution by PAM showed that by adding CD to composite sponges, blood penetration, diffusion, and absorption increased. Based on these findings, using CD and CMC/CS together can improve the physicochemical properties of sponge nanocomposites, making them ideal for wound dressing.
Collapse
Affiliation(s)
- Neda Aminoroaya
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | | | - Ali Rezaei
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran; Department of Physics, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Mahdi Ahadian
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Bukatuka CF, Mbituyimana B, Xiao L, Qaed Ahmed AA, Qi F, Adhikari M, Shi Z, Yang G. Recent Trends in the Application of Cellulose-Based Hemostatic and Wound Healing Dressings. J Funct Biomater 2025; 16:151. [PMID: 40422816 DOI: 10.3390/jfb16050151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/28/2025] Open
Abstract
Rapid hemostasis and wound healing are crucial severe trauma treatment. Natural mechanisms often prove insufficient, spurring research for innovative biomaterials. This review focuses on cellulose-based materials, which are promising due to their absorbency, biocompatibility, and processability. The novelty lies in exploring how these materials promote clotting and tissue regeneration. They operate via extrinsic and intrinsic mechanisms. Extrinsically, they create a matrix at the wound to activate coagulation; intrinsically, they maintain clotting factors. Additionally, they aid healing through physical, chemical, and biological means, such as maintaining moisture, incorporating antimicrobial agents, and stimulating cell activity. The innovative fabrication strategies include material selection and chemical modification. Techniques like oxidation enhance performance. Structural engineering methods like freeze-drying and 3D printing optimize porosity and alignment. Cellulose-based dressings are versatile and effective in various forms. They address different wound needs and show benefits like rapid coagulation and tissue repair. This review also covers challenges and future trends, emphasizing the need to enhance mechanical properties and biodegradability. Further, new technologies offer potential improvements to the nanocomposites. Overall, continued research on cellulose-based dressing is vital, and unlocking their potential could revolutionize wound care, providing suitable solutions for trauma management.
Collapse
Affiliation(s)
- Clemence Futila Bukatuka
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Abeer Ahmed Qaed Ahmed
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Manjilla Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Organ Transplantation Clinical Medical Research Center of Hubei Province, Wuhan 430030, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Organ Transplantation Clinical Medical Research Center of Hubei Province, Wuhan 430030, China
| |
Collapse
|
4
|
Zhang M, Hou L, Song W, Tan Y, Huang Y, Li Z, Huang X, Kong Y, Zhang C, Liang L, Feng Y, Liu Q, Fu X, Huang S. Development of an alginate-based bioink with enhanced hemostatic and antibacterial properties. Int J Biol Macromol 2025; 302:140549. [PMID: 39894123 DOI: 10.1016/j.ijbiomac.2025.140549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Alginate, a recognized biosafe material with inherent hemostatic properties, has been widely explored for emergency hemostatic applications and wound dressings. However, advancements in crosslinking strategies and the integration of additional functionalities are essential to expand its clinical versatility. In this study, we report the development of a novel alginate-based bioink designed to address urgent clinical challenges posed by incompressible and irregular site bleeding. Our bioink, characterized by rapid photocrosslinking and sustained antibacterial effects, offers a promising solution for hemorrhage control and wound repair. The developed bioink, AL@FM, is an injectable photopolymerized alginate-based hydrogel incorporating functional modifiers (PVP, CMC, glycerol and ε-PL) that enhance its rapid hemostasis, antibacterial action, and wound healing properties, demonstrating exceptional biocompatibility in extensive in vitro and in vivo evaluations. AL@FM exhibits superior hemostatic efficiency compared to commercial controls, effectively accelerating wound contraction and angiogenesis, while displaying potent antibacterial properties and improved injectability. The integration of these multifaceted features into an alginate-based platform extends its applicability, particularly in the context of in situ 3D bioprinting where rapid gelation and immediate functionality are critical.
Collapse
Affiliation(s)
- Mengde Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Linhao Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Yaxin Tan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Yuyan Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Xing Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, PR China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Chao Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Liting Liang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Yu Feng
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Qinghua Liu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China.
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China.
| |
Collapse
|
5
|
Li S, Ren X, Liu Y, Wang L, Zhou Y, Zhang Y, Yan Z, Lan X, Guo L. Multifunctional carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel loaded with ginsenoside Rg1 and polydopamine nanoparticles for infected diabetic wound healing. Int J Biol Macromol 2024; 282:136686. [PMID: 39427794 DOI: 10.1016/j.ijbiomac.2024.136686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Besides bacterial infection, diabetic wounds are often accompanied by local inflammatory response, oxidative stress imbalances, and vascular formation disorders, which are the main reasons for long-term non-healing of diabetic wounds. In order to solve this problem, Ch-OCMC-PDA NPs-Rg1 self-healing hydrogel was constructed by Schiff base reaction. With the addition of PDA NPs and Rg1, Ch-OCMC-PDA NPs-Rg1 hydrogel showed excellent physical properties, like compressive strength of 142 kPa, swelling ratio of 148.91 %, and Rg1 carried in the hydrogel could achieve a slow release of 90.59 % within 48 h. What's more, PDA NPs endowed it with highly efficient photothermal antibacterial properties. In addition to excellent biocompatibility, Ch-OCMC-PDA NPs-Rg1 hydrogel could effectively clear intracellular reactive oxygen species, promote macrophages M2 transformation, and facilitate human umbilical vein endothelial cells migration and tube formation. In vivo experiments exhibited that Ch-OCMC-PDA NPs-Rg1 hydrogel could reduce wound inflammation, stimulate early angiogenesis, promote collagen deposition, and shorten the healing process of diabetic infected wounds, and the wound healing rate was significantly increased compared with other groups, reaching 98.41 ± 0.31 %. In summary, the multi-functional dynamic Ch-OCMC-PDA NPs-Rg1 hydrogel provides a new possibility for the treatment of diabetic infection wounds.
Collapse
Affiliation(s)
- Sihui Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China; Ziyang Central Hospital, China
| | - Xiaofeng Ren
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Youbo Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Li Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yang Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yunan Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Zhongyi Yan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ling Guo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Lashkarizadeh MM, Ghaedi A, Abolghasemi H, Rabiee M, Mehrabani D, Ahadian S, Bazrgar A, Moqbel Esfahani S, Paydar S. Comparison of gauze packing, sponge-based, and hemostatic surgicel wound stasis dressings to treat hemorrhages from grade IV liver injuries: An experimental study. Heliyon 2024; 10:e39894. [PMID: 39539973 PMCID: PMC11558625 DOI: 10.1016/j.heliyon.2024.e39894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/12/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Uncontrolled bleeding is still the major factor leading to preventable deaths following trauma. This study sought to assess the effectiveness of mini sponge-based wound stasis, cellulose-based local hemostatic, and traditional gauze dressings for the control of hemorrhages resulting from grade 4 liver injuries in rats. Methods Thirty Sprague-Dawley rats were divided into three equal groups. In the first group, a liver laceration was treated with gauze packing. The second group received XStat minisponge dressing (MDS), and the third group was administered a combination of MDS dressing and Surgicel hemostatic agent. After gaining access to the intra-abdominal cavity, a liver laceration measuring 10 mm in length, 5 mm in depth, and extending to the middle lobe was created. The dressings were removed after 2 and 10 min to assess the amount of bleeding, and any bleeding was documented again after 48 h. Intraperitoneal adhesions were evaluated during euthanasia. Results At 2 min post-injury, the gauze packing group had an average bleeding volume of 0.97 ± 0.15 mL, compared to 1.08 ± 0.25 mL in the MDS group (P = 0.26) and 1.02 ± 0.18 mL in the MDS + Surgicel group (P = 0.69). At 10 min, the bleeding volumes were 0.13 ± 0.05 mL, 0.22 ± 0.01 mL (P = 0.09), and 0.14 ± 0.05 mL (P = 0.19), respectively. At 48 h, significant differences were observed in bleeding volumes (gauze: 0.55 ± 0.18 mL, MDS: 1.15 ± 0.21 mL, MDS + Surgicel: 0.82 ± 0.06 mL, P < 0.001). Mortality rates after 14 days were 0 % in the gauze packing group, 60 % in the MDS group (P = 0.001), and 60 % in the MDS + Surgicel group (P = 0.001). The gauze packing group displayed no adhesions, while the other groups exhibited adhesions in the liver, bowel, omentum, and abdominal wall. Conclusion Our results indicate that, when it comes to managing bleeding in severe liver injuries, traditional gauze packing remains the tried-and-true method, showing superior effectiveness in terms of blood loss and mortality when compared to XStat minisponge dressings and the fibrillar Surgicel hemostatic agents.
Collapse
Affiliation(s)
| | - Arshin Ghaedi
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Abolghasemi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Division of Hepatopancreatobiliary & Liver Transplantation, Imam Khomeini Hospital Complex, Iran
| | - Mina Rabiee
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Department of Genetics, Islamic Azad University, Shahre-Kord Branch, Share-Kord, Iran
| | - Samad Ahadian
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Bazrgar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaqayeq Moqbel Esfahani
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Paydar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Li W, Yu J, Li Q, Wang H, Liu X, Li P, Jiang X, Yang J. Bacterial cellulose nanofiber reinforced self-healing hydrogel to construct a theranostic platform of antibacterial and enhanced wound healing. Int J Biol Macromol 2024; 281:136336. [PMID: 39370083 DOI: 10.1016/j.ijbiomac.2024.136336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
In order to promote wound healing, self-healing hydrogels with moisturizing property are employed as wound dressing. In this study, bacterial cellulose nanofibers (BCN) with high mechanical strength are used as reinforcement to improve the mechanical properties of self-healing hydrogels. A multifunctional self-healing hydrogel has been constructed by incorporating natural biomass, including Ag hybrid bacterial cellulose nanofiber (Ag-BCN), resveratrol (Res), and carbon nanodots (CNDs). The results of in vitro experiments demonstrate that the mechanical strength of the hybrid hydrogel was increased by 6 times with the addition of Ag-BCN, which also offers excellent antibacterial efficiency (S. aureus 99.99 % and E. coli 99.68 %). The hydrogel with CNDs can observe the healing process of the crack in real time and realize the controlled release of Res through photothermal effect. Moreover, the results of animal model experiments indicate that the prepared hydrogel could reduce the infection of the wound, effectively shorten the progress of wound healing (from 21d to 14 d). All the results imply that the prepared hydrogel has great promise in the application of skin wound healing.
Collapse
Affiliation(s)
- Wenping Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Junjie Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Qingxue Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Heng Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Pingyun Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Xiaohong Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Jiazhi Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
8
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
9
|
Kim SW, Baik S, Hyun J, Lee J, Lim D, Lee TJ, Jeong GJ, Im GB, Seo I, Kim YH, Pang C, Bhang SH. Facile Size Tunable Skin-Adaptive Patch for Accelerating Wound Healing. Adv Healthc Mater 2024:e2304435. [PMID: 39235562 DOI: 10.1002/adhm.202304435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/12/2024] [Indexed: 09/06/2024]
Abstract
Owing to the moist and curved interfaces of skin wounds, enhancing the adhesiveness while maintaining delivery efficacy of biomolecules has drawn significant attention in advanced wound dressings. Despite tremendous trials to load biomolecules with sound adhesiveness, the complicated fabricating processes and abnormal allergic responses that are attributed to chemical moiety-based adhesives remain as major problems. To this end, in this study a one-step fabrication process is developed to manufacture microstructures with both a therapeutic (cylindrical structure for embossed structure human adipose-derived stem cell sheet, ESS) and an adhesive part (octopi-inspired structure of adhesive, OIA), which ESOIA is called. OIA showed the highest adhesion strength in both dry (1.48 N cm-2) and wet pig skin conditions (0.81 N cm-2), maintaining the adhesive properties after repeated attach-detach trials. ESS from the therapeutic part of ESOIA also showed an enhanced angiogenic effect compared with the ones that are normally cultured in vitro. ESS also showed improved in vivo wound healing outcomes following enhanced cell engraftment compared to the cell injection group by means of intact cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sangyul Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Tae-Jin Lee
- Department of Medical Biotechnology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
10
|
Tang C, Shi T, Xu G, Yin J, Yan S, Bao X. Tranexamic acid-loaded catechol-modified hyaluronic acid/carboxymethyl chitosan double cross-linked porous gel micropowders for rapid hemostasis and wound healing. Int J Biol Macromol 2024; 275:133363. [PMID: 38914405 DOI: 10.1016/j.ijbiomac.2024.133363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Acquiring rapid and effective hemostasis remains a critical clinical challenge. Current researches focus on concentrating blood components to speed up the hemostatic while ignore the effect of anti-fibrinolysis in promoting blood coagulation. Herein, we designed a novel tranexamic acid (TA)-loaded physicochemical double cross-linked multifunctional catechol-modified hyaluronic acid-dopamine/carboxymethyl chitosan porous gel micropowders (TA&Fe3+@HA-DA/CMCS PGMs) for rapid hemostasis and wound healing. TA&Fe3+@HA-DA/CMCS PGMs exhibited high water absorption rate (505.9 ± 62.1 %) and rapid hemostasis (79 ± 4 s) in vivo. Catechol groups, Fe3+ and the protonated amino groups of CMCS induced bacterial death. Moreover, TA&Fe3+@HA-DA/CMCS PGMs displayed sufficient adhesion to a variety of wet rat tissues. TA&Fe3+@HA-DA/CMCS PGMs on various bleeding wounds, including rat liver injury and tail severed models showed excellent hemostasis performance. The TA&Fe3+@HA-DA/CMCS PGMs could promote the healing of full-thickness skin wounds on the backs of rats. The advantages of TA&Fe3+@HA-DA/CMCS PGMs including rapid hemostasis, effective wound healing, good tissue adhesion, antibacterial properties and ease of use make it potentially valuable in clinical application.
Collapse
Affiliation(s)
- Chen Tang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Tuhe Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China.
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Xiaogang Bao
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
11
|
Song S, Liu X, Ding L, Liu Z, Abubaker MA, Xu Y, Zhang J. A bacterial cellulose/polyvinyl alcohol/nitro graphene oxide double layer network hydrogel efficiency antibacterial and promotes wound healing. Int J Biol Macromol 2024; 269:131957. [PMID: 38692544 DOI: 10.1016/j.ijbiomac.2024.131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
In this study, graphene oxide (GO) was chemically modified utilizing concentrated nitric acid to produce a nitrated graphene oxide derivative (NGO) with enhanced oxidation level, improved dispersibility, and increased antibacterial activity. A double-layer composite hydrogel material (BC/PVA/NGO) with a core-shell structure was fabricated by utilizing bacterial cellulose (BC) and polyvinyl alcohol (PVA) binary composite hydrogel scaffold as the inner network template, and hydrophilic polymer (PVA) loaded with antibacterial material (NGO) as the outer network. The fabrication process involved physical crosslinking based on repeated freezing and thawing. The resulting BC/PVA/NGO hydrogel exhibited a porous structure, favorable mechanical properties, antibacterial efficacy, and biocompatibility. Subsequently, the performance of BC/PVA/NGO hydrogel in promoting wound healing was evaluated using a mouse skin injury model. The findings demonstrated that the BC/PVA/NGO hydrogel treatment group facilitated improved wound healing in the mouse skin injury model compared to the control group and the BC/PVA group. This enhanced wound healing capability was attributed primarily to the excellent antibacterial and tissue repair properties of the BC/PVA/NGO hydrogel.
Collapse
Affiliation(s)
- Shen Song
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoyuan Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, China
| | - Ling Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Zhao Liu
- National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Mohamed Aamer Abubaker
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Department of Biology, Faculty of Education, University of Khartoum, Khartoum 11111, Sudan
| | - Yaqiang Xu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
12
|
Jia B, Hao T, Chen Y, Deng Y, Qi X, Zhou C, Liu Y, Guo S, Qin J. Mussel-inspired tissue adhesive composite hydrogel with photothermal and antioxidant properties prepared from pectin for burn wound healing. Int J Biol Macromol 2024; 270:132436. [PMID: 38761908 DOI: 10.1016/j.ijbiomac.2024.132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Biodegradable self-healing hydrogels with antibacterial property attracted growing attentions in biomedication as wound dressings since they can prevent bacterial infection and promote wound healing process. In this research, a biodegradable self-healing hydrogel with ROS scavenging performance and enhanced tissue adhesion was fabricated from dopamine grafted oxidized pectin (OPD) and naphthoate hydrazide terminated PEO (PEO NH). At the same time, Fe3+ ions were incorporated to endow the hydrogel with near-infrared (NIR) triggered photothermal property to obtain antibacterial activity. The composite hydrogel showed good hemostasis performance based on mussel inspired tissue adhesion with biocompatibility well preserved. As expected, the composition of FeCl3 improved conductivity and endowed photothermal property to the hydrogel. The in vivo wound repairing experiment revealed the 808 nm NIR light triggered photothermal behavior of the hydrogel reduced the inflammation response and promoted wound repairing rate. As a result, this composite FeCl3/hydrogel shows great potential to be an excellent wound dressing for the treatment of infection prong wounds with NIR triggers.
Collapse
Affiliation(s)
- Boyang Jia
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Tingting Hao
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yanai Chen
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yawen Deng
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xingzhong Qi
- Hebei Zhitong Biological Pharmaceutical Co., Ltd., Baoding 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yanfang Liu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
13
|
Zhao B, Zhu P, Zhang H, Gao Y, Zha L, Jin L, Zhang L. Nanofiber Hydrogel Drug Delivery System for Prevention of Postsurgical Intestinal Adhesion. ACS Biomater Sci Eng 2024; 10:3164-3172. [PMID: 38671385 DOI: 10.1021/acsbiomaterials.3c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Intestinal adhesion is one of the complications that occurs more frequently after abdominal surgery. Postsurgical intestinal adhesion (PIA) can lead to a series of health problems, including abdominal pain, intestinal obstruction, and female infertility. Currently, hydrogels and nanofibrous films as barriers are often used for preventing PIA formation; however, these kinds of materials have their intrinsic disadvantages. Herein, we developed a dual-structure drug delivery patch consisting of poly lactic-co-glycolic acid (PLGA) nanofibers and a chitosan hydrogel (NHP). PLGA nanofibers loaded with deferoxamine mesylate (DFO) were incorporated into the hydrogel; meanwhile, the hydrogel was loaded with anti-inflammatory drug dexamethasone (DXMS). The rapid degradation of the hydrogel facilitated the release of DXMS at the acute inflammatory stage of the early injury and provided effective anti-inflammatory effects for wound sites. Moreover, PLGA composite nanofibers could provide sustained and stable release of DFO for promoting the peritoneal repair by the angiogenesis effects of DFO. The in vivo results indicated that NHP can effectively prevent PIA formation by restraining inflammation and vascularization, promoting peritoneal repair. Therefore, we believe that our NHP has a great potential application in inhibition of PIA.
Collapse
Affiliation(s)
- Bei Zhao
- Zhoukou Central Hospital, Zhoukou 466001, China
| | - Panyong Zhu
- Zhoukou Central Hospital, Zhoukou 466001, China
| | | | - Yaoran Gao
- Zhoukou Central Hospital, Zhoukou 466001, China
| | - Ling Zha
- Zhoukou Central Hospital, Zhoukou 466001, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Lei Zhang
- Zhoukou Central Hospital, Zhoukou 466001, China
| |
Collapse
|
14
|
Lu M, Peng W, Kang W, Huang L, Zhang J, Tan S, Huo DL, Chen H. Self-healing hydrogel based on poly (vinyl alcohol)-poly (lysine)-gum arabic accelerates diabetic wound healing under photothermal sterilization. Int J Biol Macromol 2024; 266:131395. [PMID: 38582460 DOI: 10.1016/j.ijbiomac.2024.131395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Diabetic wounds are a significant clinical challenge. Developing effective antibacterial dressings is crucial for preventing wound ulcers caused by bacterial infections. In this study, a self-healing antibacterial hydrogel (polyvinyl alcohol (PVA)-polylysine-gum arabic, PLG hydrogels) with near-infrared photothermal response was prepared by linking PVA and a novel polysaccharide-amino acid compound (PG) through borate bonding combined with freeze-thaw cycling. Subsequently, the hydrogel was modified by incorporating inorganic nanoparticles (modified graphene oxide (GM)). The experimental results showed that the PLGM3 hydrogels (PLG@GM hydrogels, 3.0 wt%) could effectively kill bacteria and promote diabetic wound tissue healing under 808-nm near-infrared laser irradiation. Therefore, this hydrogel system provides a new idea for developing novel dressings for treating diabetic wounds.
Collapse
Affiliation(s)
- Ming Lu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, PR China; Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Weicong Peng
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Wanwen Kang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| | - Dong-Liang Huo
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| | - Huifang Chen
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
15
|
Huo J, Lv X, Duan Q, Jiang R, Yang D, Sun L, Li S, Qian X. Antimicrobial and hydrophobic cellulose paper prepared by covalently attaching cinnamaldehyde for strawberries preservation. Int J Biol Macromol 2024; 268:131790. [PMID: 38677693 DOI: 10.1016/j.ijbiomac.2024.131790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The demand for paper-based packaging materials as an alternative to incumbent disposable petroleum-derived polymers for food packaging applications is ever-growing. However, typical paper-based formats are not suitable for use in unconventional applications due to inherent limitations (e.g., excessive hydrophilicity, lack antimicrobial ability), and accordingly, enabling new capabilities is necessity. Herein, a simple and environmentally friendly strategy was proposed to introduce antimicrobial and hydrophobic functions to cellulose paper through successive chemical grafting of 3-aminopropyltriethoxysilane (APS) and cinnamaldehyde (CA). The results revealed that cellulose paper not only showed long-term antibacterial effect on different bacteria, but also inhibited a wide range of fungi. Encouragingly, the modified paper, which is fluorine-free, displays a high contact angle of 119.7°. Thus, even in the wet state, the modified paper can still maintain good mechanical strength. Meanwhile, the multifunctional composite papers have excellent biocompatibility and biodegradability. Compared with ordinary cellulose paper, multifunctional composite paper can effectively prolong the shelf life of strawberries. Therefore, the multifunctional composite paper represents good application potential as a fruit packaging material.
Collapse
Affiliation(s)
- Jiaqi Huo
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Xingyu Lv
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Qinghui Duan
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Ruyi Jiang
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| | - Dongmei Yang
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China.
| | - Lijian Sun
- College of Light Industry and Textile, Qiqihar University, Qiqihar, China.
| | - Shujun Li
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China.
| | - Xueren Qian
- Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Zhou C, Chen L, Zhou W, Wang L, Zhang R, Yang C. Antimicrobial polyacrylic acid/tannic acid hydrogel wound dressing facilitating full-thickness skin healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:501-518. [PMID: 38198288 DOI: 10.1080/09205063.2023.2300493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Polyphenolic compound-modified hydrogel wound dressings with excellent wet tissue adhesion, antimicrobial properties, stretchability, and full-thickness skin healing properties are still extremely rare so far. Polyphenolic compounds such as tannic acid or dopamine can improve the antibacterial and bioadhesive properties of hydrogels, and are also polymerization inhibitors for free radical polymerization. In this study, polyacrylic acid (PAA) aqueous solution was first synthesized, and then antibacterial PAA-TA hydrogel was prepared by mixing it with tannic acid (TA) and the crosslinker 1,6-hexanediol bis(2-methyl-1-propionic acid azide) (HBMAP). This method avoids the hindrance of the phenolic hydroxyl groups in TA on acrylic acid polymerization, and we were able to obtain a series of TA hydrogels (in the range of 0-15 wt.%. We applied these PAA-TA hydrogels to wound dressings and found that they had excellent adhesion to biological tissues, and the tensile strength and elongation at break of PAA-TA hydrogels with 15 wt.%TA content were as high as 1.72 MPa and 1446.3% in tensile strength evaluation. In addition, microbiological analysis showed that wound dressings had significant antimicrobial activity against Staphylococcus aureus and Escherichia coli. In vitro wound healing experiments confirmed that the wound dressing was biocompatible and could significantly promote the healing of full-thickness skin defects in the guinea pig model. Our work describes an injectable, self-healing, antimicrobial hydrogel that may have promising clinical applications as a wound dressing material.
Collapse
Affiliation(s)
- Changlin Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
- Department of Research and Development, Hubei Three Gorges Laboratory, Yichang, China
| | - Lingmin Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
| | - Wenyan Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
| | - Lei Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
| | - Ruitao Zhang
- Medical College, China Three Gorges University, Yichang, China
| | - Chen Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
| |
Collapse
|
17
|
Yao J, Chen Y, Zhang X, Chen J, Zhou C, Jiang J, Zhang H, Wu K. Slightly photo-crosslinked chitosan/silk fibroin hydrogel adhesives with hemostasis and anti-inflammation for pro-healing cyclophosphamide-induced hemorrhagic cystitis. Mater Today Bio 2024; 25:100947. [PMID: 38298562 PMCID: PMC10826334 DOI: 10.1016/j.mtbio.2024.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Cyclophosphamide is commonly used in the treatment of various cancers and autoimmune diseases, while concurrently imposing substantial toxicity on the bladder, frequently manifesting hemorrhagic cystitis. Intravesical interventions, such as hyaluronic acid supplementation, present a therapeutic strategy to reinstate bladder barrier function and alleviate the effects of metabolic toxicants. However, it remains a great challenge to achieve efficient cyclophosphamide-induced hemorrhagic cystitis (CHC) management with accelerated tissue repair owing to the low wet-adhesion, poor hemostasis, and acute inflammatory responses. To address these issues, a hemostatic and anti-inflammatory hydrogel adhesive of chitosan methylacryloyl/silk fibroin methylacryloyl (CHMA/SFMA) is developed for promoting the healing of CHC. The obtained hydrogels show a high adhesive strength of 26.21 N/m with porcine bladder, facilitating the rapid hemostasis within 15 s, and reinstate bladder barrier function. Moreover, this hydrogel adhesive promotes the proliferation and aggregation of SV-HUC-1 and regulates macrophage polarization. Implanting the hydrogels into CHC bladders of a SD rat model, they not only can be completely biodegraded in 14 days, but also effectively control hematuria and inflammation, and accelerate angiogenesis, thereby significantly promote the healing of bladder injury. Overall, CHMA/SFMA hydrogels exhibit rapid hemostasis for treating CHC and accelerate muscle tissue repair via angiogenesis and inflammation amelioration, which may provide a new path for managing severe hemorrhagic cystitis in the clinics.
Collapse
Affiliation(s)
- Jie Yao
- Department of Urology, Translational Research Laboratory for Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yaoqi Chen
- Department of Urology, Translational Research Laboratory for Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Xiang Zhang
- Department of Urology, Translational Research Laboratory for Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Junfeng Chen
- Department of Urology, Translational Research Laboratory for Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Cheng Zhou
- Department of Urology, Translational Research Laboratory for Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Junhui Jiang
- Department of Urology, Translational Research Laboratory for Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Hua Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Kerong Wu
- Department of Urology, Translational Research Laboratory for Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
18
|
Zheng H, Lu H, Li S, Niu J, Leong YK, Zhang W, Lee DJ, Chang JS. Recent advances in electrospinning-nanofiber materials used in advanced oxidation processes for pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123223. [PMID: 38158009 DOI: 10.1016/j.envpol.2023.123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Electrospun nanofiber membranes have emerged as a novel catalyst, demonstrating exceptional efficacy in advanced oxidation processes (AOPs) for the degradation of organic pollutants. Their superior performance can be attributed to their substantial specific surface area, high porosity, ease of modification, rapid recovery, and unparalleled chemical stability. This paper aims to comprehensively explore the progressive applications and underlying mechanisms of electrospun nanofibers in AOPs, which include Fenton-like processes, photocatalysis, catalytic ozonation, and persulfate oxidation. A detailed discussion on the mechanism and efficiency of the catalytic process, which is influenced by the primary components of the electrospun catalyst, is presented. Additionally, the paper examines how concentration, viscosity, and molecular weight affect the characteristics of the spinning materials and seeks to provide a thorough understanding of electrospinning technology to enhance water treatment methods. The review proposes that electrospun nanofiber membranes hold significant potential for enhancing water treatment processes using advanced oxidation methods. This is attributed to their advantageous properties and the tunable nature of the electrospinning process, paving the way for advancements in water treatment through AOPs.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Han Lu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
19
|
Arin A, Rahaman MS, Farwa U, Gwon J, Bae SH, Kim YK, Lee BT. An agarose-based TOCN-ECM bilayer lyophilized-hydrogel with hemostatic and regenerative properties for post-operative adhesion management. Int J Biol Macromol 2024; 262:130094. [PMID: 38350583 DOI: 10.1016/j.ijbiomac.2024.130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
This study used a unique approach by developing a bilayer system that can simultaneously accomplish non-adhesion, hemostatic, and tissue regenerative properties. In this system, agarose was used as a carrier material, with an agarose-TEMPO-oxidized cellulose nanofiber (TOCN), (AT) layer acting as a non-adhesion layer and an Agarose-Extracellular matrix, (AE) layer acting as a tissue regenerative layer. Thrombin was loaded on the AE layer as an initiator of the healing process, by hemostasis. AT 1:4 showed 79.3 % and AE 1:4 showed 84.66 % cell viability initially confirming the biocompatible nature of the layers. The AE layer showed cell attachment and proliferation on its surface whereas on the AT layer, cells are visible but no attachment was observed. Furthermore, in vivo analysis was conducted. The non-adhesive layer was grafted between the cecum and peritoneal wall which showed that (AT 1:4) displayed remarkable non-adhesion properties as compared to a commercial product and the non-treated group. Hemostasis and tissue regeneration ability were evaluated using rat liver models. The bleeding time of AE 1:4TH was recorded as 160 s and the blood loss was 5.6 g. The results showed that (AE 1:4) displayed effective regeneration ability in the liver model after two weeks.
Collapse
Affiliation(s)
- Asuva Arin
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, -31151, Republic of Korea
| | - Md Sohanur Rahaman
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, -31151, Republic of Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Jaegyoung Gwon
- Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute, Seoul, South Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Yung Kil Kim
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, -31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| |
Collapse
|
20
|
Homayouni-Rad A, Mortazavian AM, Pourjafar H, Moghadam SK. Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials. Curr Pharm Biotechnol 2024; 25:1986-2000. [PMID: 38275053 DOI: 10.2174/0113892010264234231219073231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024]
Abstract
Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.
Collapse
Affiliation(s)
- Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Li Y, Song D, Yu Z, Zhang Y, Liu Z, Yan T. Effect and mechanism of hypoxia on differentiation of porcine-induced pluripotent stem cells into vascular endothelial cells. In Vitro Cell Dev Biol Anim 2024; 60:9-22. [PMID: 38148354 DOI: 10.1007/s11626-023-00833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
Pigs are similar to humans in organ size and physiological function, and are considered as good models for studying cardiovascular diseases. The study of porcine-induced pluripotent stem cells (piPSC) differentiating into vascular endothelial cells (EC) is expected to open up a new way of obtaining high-quality seed cells. Given that the hypoxic environment has an important role in the differentiation process of vascular EC, this work intends to establish a hypoxia-induced differentiation system of piPSC into vascular EC. There is evidence that the hypoxia microenvironment in the initial stage could significantly improve differentiation efficiency. Further study suggests that the hypoxia culture system supports a combined effect of hypoxia inducible factors and their associated regulatory molecules, such as HIF-1α, VEGFA, FGF2, LDH-A, and PDK1, which can efficiently promote the lineage-specific differentiation of piPSC into EC. Most notably, the high level of ETV2 after 4 d of hypoxic treatment indicates that it possibly plays an important role in the promoting process of EC differentiation. The research is expected to help the establishment of new platforms for piPSC directional induction research, so as to obtain adequate seed cells with ideal phenotype and functionality.
Collapse
Affiliation(s)
- Yimei Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Danyang Song
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuoran Yu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
22
|
Hemraz UD, Lam E, Sunasee R. Recent advances in cellulose nanocrystals-based antimicrobial agents. Carbohydr Polym 2023; 315:120987. [PMID: 37230623 DOI: 10.1016/j.carbpol.2023.120987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Over the past five years, there has been growing interest in the design of modified cellulose nanocrystals (CNCs) as nanoscale antimicrobial agents in potential end-user applications such as food preservation/packaging, additive manufacturing, biomedical and water purification. The interest of applying CNCs-based antimicrobial agents arise due to their abilities to be derived from renewable bioresources and their excellent physicochemical properties including rod-like morphologies, large specific surface area, low toxicity, biocompatibility, biodegradability and sustainability. The presence of ample surface hydroxyl groups further allows easy chemical surface modifications for the design of advanced functional CNCs-based antimicrobial materials. Furthermore, CNCs are used to support antimicrobial agents that are subjected to instability issues. The current review summarizes recent progress in CNC-inorganic hybrid-based materials (Ag and Zn nanoparticles, other metal/metal oxide) and CNC-organic hybrid-based materials (polymers, chitosan, simple organic molecules). It focuses on their design, syntheses and applications with a brief discussion on their probable modes of antimicrobial action whereby the roles of CNCs and/or the antimicrobial agents are highlighted.
Collapse
Affiliation(s)
- Usha D Hemraz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada.
| | - Edmond Lam
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada; Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | - Rajesh Sunasee
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA.
| |
Collapse
|
23
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
24
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
25
|
Tian L, Sun T, Fan M, Lu H, Sun C. Novel silk protein/hyaluronic acid hydrogel loaded with azithromycin as an immunomodulatory barrier to prevent postoperative adhesions. Int J Biol Macromol 2023; 235:123811. [PMID: 36841387 DOI: 10.1016/j.ijbiomac.2023.123811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Peritoneal adhesions, a common postoperative complication of laparotomy, are still treated with physical barriers, but their efficacy and ease of use are controversial. In this paper, we developed a wound microenvironment-responsive hydrogel composed of Antheraea pernyi silk protein (ASF) from wild cocoons and tyramine-modified hyaluronic acid (HA-Ph) loaded with azithromycin (AZI), glucose oxidase (GOX), and horseradish peroxidase (HRP). In addition, GOX-catalyzed oxygen production enhanced the antibacterial ability of the hydrogel. Moreover, the drug-loaded hydrogel increased macrophage CD206 expression while decreasing IL-6 and TNF-α expression. More importantly, the retarding effect of this novel hydrogel system on AZI almost eliminated the appearance of postoperative adhesions in rats. It was also found that the novel hydrogel enhanced the modulation of the TLR-4/Myd88/NF-κB pathway and TGF-β/Smad2/3 pathway by azithromycin in the locally damaged peritoneum of rats, which accelerated the remodeling of damaged tissues and dramatically reduced the deposition of collagen. Therefore, spraying the novel drug-loaded hydrogel on postoperative abdominal wounds can effectively inhibit the formation of postoperative adhesions.
Collapse
Affiliation(s)
- Linan Tian
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Tongtong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Mengyao Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Changshan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
26
|
Wu X, Chen J, Zhou A, Zhao Y, Tian Z, Zhang Y, Chen K, Ning X, Xu Y. Light-Activated Chemically Reactive Fibrous Patch Revolutionizes Wound Repair Through the Prevention of Postoperative Adhesion. NANO LETTERS 2023; 23:1435-1444. [PMID: 36752657 DOI: 10.1021/acs.nanolett.2c04774] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A light-activated chemically reactive fibrous patch (ChemPatch) with tissue adhesion and wound healing activity was developed for preventing postoperative peritoneal adhesion. ChemPatch was constructed by an integrative electrospinning fabrication strategy, generating multifunctional PCL-NHS fibers encapsulating antioxidant curcumin and MnO2 nanoparticles. ChemPatch exhibited excellent photothermal conversion, which not only reformed the physical state to match the tissue but also improved conjugation between ChemPatch and tissues, allowing for strong attachment. Importantly, ChemPatch possessed good antioxidant and radical scavenging activity, which protected cells in an oxidative microenvironment and improved tissue regeneration. Particularly, ChemPatch acted as a multifunctional barrier and could not only promote reepithelialization and revascularization in wound defect model but simultaneously ameliorate inflammation and prevent postoperative peritoneal adhesion in a mouse cecal defect model. Thus, ChemPatch represents a dual-active bioadhesive barrier for reducing the incidence and severity of peritoneal adhesions.
Collapse
Affiliation(s)
- Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yinfeng Zhao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi 830046, P. R. China
| | - Yiping Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Imam SS, Gilani SJ, Zafar A, Jumah MNB, Alshehri S. Formulation of Miconazole-Loaded Chitosan-Carbopol Vesicular Gel: Optimization to In Vitro Characterization, Irritation, and Antifungal Assessment. Pharmaceutics 2023; 15:pharmaceutics15020581. [PMID: 36839903 PMCID: PMC9959533 DOI: 10.3390/pharmaceutics15020581] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Miconazole nitrate (MN) is a poorly water-soluble and antifungal drug used for fungal infections. The present research work was designed to develop topical MN-loaded bilosomes (BSs) for the improvement of therapeutic efficacy. MZBSs were prepared by using the thin-film hydration method and further optimized by using the Box-Behnken statistical design (BBD). The optimized miconazole bilosome (MZBSo) showed nano-sized vesicles, a low polydispersity index, a high entrapment efficiency, and zeta potential. Further, MZBSo was incorporated into the gel using carbopol 934P and chitosan polymers. The selected miconazole bilosome gel (MZBSoG2) demonstrated an acceptable pH (6.4 ± 0.1), viscosity (1856 ± 21 cP), and spreadability (6.6 ± 0.2 cm2). Compared to MZBSo (86.76 ± 3.7%), MZBSoG2 showed a significantly (p < 0.05) slower drug release (58.54 ± 4.1%). MZBSoG2 was found to be a non-irritant because it achieved a score of zero (standard score) in the HET-CAM test. It also exhibited significant antifungal activity compared to pure MZ against Candida albicans and Aspergillus niger. The stability study results showed no significant changes after stability testing under accelerated conditions. MZ-loaded gels could serve as effective alternative carriers for improving therapeutic efficacy.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year of Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (S.J.G.); (A.Z.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (S.J.G.); (A.Z.)
| | - May Nasser Bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Szulc M, Lewandowska K. Biomaterials Based on Chitosan and Its Derivatives and Their Potential in Tissue Engineering and Other Biomedical Applications-A Review. Molecules 2022; 28:molecules28010247. [PMID: 36615441 PMCID: PMC9821994 DOI: 10.3390/molecules28010247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
In the times of dynamically developing regenerative medicine, more and more attention is focused on the use of natural polymers. This is due to their high biocompatibility and biodegradability without the production of toxic compounds, which means that they do not hurt humans and the natural environment. Chitosan and its derivatives are polymers made most often from the shells of crustaceans and are biodegradable and biocompatible. Some of them have antibacterial or metal-chelating properties. This review article presents the development of biomaterials based on chitosan and its derivatives used in regenerative medicine, such as a dressing or graft of soft tissues or bones. Various examples of preparations based on chitosan and its derivatives in the form of gels, films, and 3D structures and crosslinking products with another polymer are discussed herein. This article summarizes the latest advances in medicine with the use of biomaterials based on chitosan and its derivatives and provides perspectives on future research activities.
Collapse
Affiliation(s)
- Marta Szulc
- Correspondence: (M.S.); (K.L.); Tel.: +48-56-6114551 (M.S. & K.L.)
| | | |
Collapse
|
29
|
Song M, Wang J, He J, Kan D, Chen K, Lu J. Synthesis of Hydrogels and Their Progress in Environmental Remediation and Antimicrobial Application. Gels 2022; 9:16. [PMID: 36661783 PMCID: PMC9858390 DOI: 10.3390/gels9010016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
As a kind of efficient adsorptive material, hydrogel has a wide application prospect within different fields, owing to its unique 3D network structures composed of polymers. In this paper, different synthetic strategies, crosslinking methods and their corresponding limitations and outstanding contributions of applications in the fields of removing environmental pollutants are reviewed to further provide a prospective view of their applications in water resources sustainability. Furthermore, the applications within the biomedical field, especially in wound dressing, are also reviewed in this paper, mainly due to their unique water retention ability, antibacterial ability, and good biocompatibility. Finally, the development direction of hydrogels in the fields of environmental remediation and biomedicine were summarized and prospected.
Collapse
Affiliation(s)
- Mengshan Song
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Jingfeng Wang
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Jiabei He
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Dongxiao Kan
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Kaiyun Chen
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
| | - Jialu Lu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
30
|
Preparation and characterization of carex meyeriana Kunthcellulose nanofibers by electrospinning. Sci Rep 2022; 12:22207. [PMID: 36564423 PMCID: PMC9789126 DOI: 10.1038/s41598-022-25835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The cellulose of carex meyeriana kunth (CMKC) was used as raw material, and the spinning solution was prepared by combining with polyacrylonitrile (PAN). The nano-cellulose fiber of carex meyeriana kunth (CMKN) was prepared by electrospinning. Used to remove methylene blue dye (MB) in aqueous solution. In the electrospinning experiment, the addition of CMKC was in the range of 5% ~ 25%, the feed rate of spinning parameters was set in the range of 0.2 ~ 1.0 mL/h, the distance from the needle tip to the collecting plate was in the range of 10 ~ 25 cm, and the voltage was changed in the range of 15 ~ 25 kV. The obtained CMKN was characterized by scanning electron microscope, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. The MB removal rate was evaluated in the dye removal experiment, and the effects of CMKN on MB removal rate under the factors of CMKC dosage, temperature, shock time and MB initial concentration were discussed. The optimum process conditions were determined by response surface methodology. The results show that the prepared fibers are superfine fibers with nanometer diameter, and the spun nanofibers have smooth surface, high overall orientation and strong uniformity. The adsorption kinetics of prepared CMKN accords with quasi-second order model, and the adsorption isotherm accords with Langmuir model. The maximum dye removal rate of CMKN is 63.24%.
Collapse
|
31
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022; 20:md20060396. [PMID: 35736199 PMCID: PMC9228111 DOI: 10.3390/md20060396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The continuous advances in surgical procedures require continuous research regarding materials with surgical applications. Biopolymers are widely studied since they usually provide a biocompatible, biodegradable, and non-toxic material. Among them, chitosan is a promising material for the development of formulations and devices with surgical applications due to its intrinsic bacteriostatic, fungistatic, hemostatic, and analgesic properties. A wide range of products has been manufactured with this polymer, including scaffolds, sponges, hydrogels, meshes, membranes, sutures, fibers, and nanoparticles. The growing interest of researchers in the use of chitosan-based materials for tissue regeneration is obvious due to extensive research in the application of chitosan for the regeneration of bone, nervous tissue, cartilage, and soft tissues. Chitosan can serve as a substance for the administration of cell-growth promoters, as well as a support for cellular growth. Another interesting application of chitosan is hemostasis control, with remarkable results in studies comparing the use of chitosan-based dressings with traditional cotton gauzes. In addition, chitosan-based or chitosan-coated surgical materials provide the formulation with antimicrobial activity that has been highly appreciated not only in dressings but also for surgical sutures or meshes.
Collapse
|